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A new method of  calculating the grand partition function of many-body system is developed, 
adopting extensively the techniques of calculus in quantum field theory. I t  is shown that the grand 
partition function, which is a trace o f  the density matrix expressed in terms of field operators, can be 
evaluated in a way almost parallel with the evaluation o f  the vacuum expectation value of the S.matrix 
in quantum field theory, provided that appropriate modifications in notation and definitions are made. 
A s  an example, the method is applied to electron-phonon system. Further, basing on this new formalism, 
various non-perturbational methods are discussed. 

§ 1. Introduction

Stimulated by the studies o f  cooperative phenomena in quantum statistical system such 
as ferro· and antiferromagnetism, superconductivity, the A-transition in liquid helium etc., 
various methods for the calculation o f  the partition function o f  many-body system with 
interaction have been put forward by many authors. These methods o f  attack have each 
its own merit, and in some cases they have been fairly successfully applied to practical 
problems. For instance, Kubo established an expansion theorem o f  the density matrix and 
applied it to ferro· and antiferromagnetism.1> Schafroth, in his theory o f  Meissner effect in 
superconductors, derived a formula in which the density matrix was expressed in powers of  
the interaction Hamiltonian.2> Essentially the same formula for the expansion of  the 
density matrix was also obtained by a different method by Chester, who made use of  it 
to discuss the Bose-Einstein condensation o f  imperfect Bose gas.3> A quite different way 
than others to handle the density matrix was invented by Feynman ( the method o f  integral 
over trajectories), and he applied it to the problem o f  liquid helium 4>. More recently, 
Friedman and Butler introduced another techniq u e of manipulating the density matrix and 
thereby discussed the transition in liq u id helium quantitatively.5> 

Generally speaking, however, it seems that major efforts have been made so far to 
overcome the difficulties encountered in treating the interaction in many-body system, so that 
there remain unsolved difficulties in taking account o f  the effect of  statistics, especially for 
Fermion system such as electrons in a superconductor and liquid helium 3, in both o f  which 
the role of  Fermi statistics seeems to be important. T o  remedy this point, it may be pro-
mising to use the number representation of  the second quantization theory for the calculation 
o f  the trace o f  the density matrix. From this view point Ichimura developed a method o f
expanding the grand partition function in powers o f  the coupling constant using the number
representation. 6> I t  appears, however, to the present author that his method is unsatisfactory 
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in the following two points : First it  will not Ье practical in evaluating higher order cor· 
rections, Ьecause trouЬlesome calculation o f  an enormous number of  terms are needed ; 
Therefore, application o f  this method will Ье restricted only to cases in which the effect o f  
higher order perturbations is unimportant. Secondly, while the number representation may 
Ье most convenient to take into account the effect o f  statistics, it has such а defect that it 
is difficult to treat Ьу this method the proЬlem in config u ration space, namely, it is not easy 
Ьу this method to utilize physical pictures connected with the config u ration space. For 
instance, one cannot utilize the quantity such as the molecular distribution function, which 
has been useful for the understanding of  the cooperative phenomena in classical system. 

I n  this paper we shall present а new approach which seems to Ье free from the above 
mentioned shortcomings o f  the n·representation. W e  introduce explicitly the quantized fi.eld 
o f  particles and utilize the various techniques o f  operator calculus in quantum fi.eld theory
as far as possiЬle in evaluating the quantum-statistical average o f  the fi.eld quantities. I n
§ 2 and § 3 we give а general formulation o f  our theory for an example o f  electron-phonon 
system. Various results obtained Ьу means o f  this new method for electron-phonon system 
are illustrated in § 4. I n  § 5 non-perturЬational treatments are discussed, starting from the
formulation given in § 2 and § 3. The last section is devoted to а possiЬle extension o f
our method to other systems. 

§ 2 .  Genera l  f o r m u l a t i o n

W е suppose that the Hamiltonian o f  а system in question can Ье divided into two parts 

Н=Н0+Н1,

each o f  which is expressed in terms o f  fi.eld quantity as 

Н 0 = Jн0(x ) d3.x,

Н1 = j H 1 (x ) d8x . 

(2·1) 

W e  shall call Но(х)  the Hamiltonian density o f  free fi.eld and Н 1 ( х )  the density of  in-
teraction Hamiltonian. The density matrix o f  а canonical ensemЬle р = ехр ( - {1Н) Ь.аs to 
satisfy the Bloch equation 

{1=1/kT. 
I f  we put 

ехр ( - {1Н) = ехр ( - {1Н0) • S ({1), 

the equation for S ({1) becomes 

where 

( 2 · 3 )  

(2·4) 

(2·5) 
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The solution of ( 2 • 5) with initial condition S (О) = 1 may Ье written as 
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(2•7) 

where Р is an ordering operator7J which re-aпanges the operators in the bracket in such an 
order that the arguments t in them are decreasing in magnitude, that is, 

( 2 · 8 )  

I f  we regard 

(2 ·9) 

as an operator in the four dimensional space with coordinates х= (х, t), then (2 • 7) can Ье 
put into another form 

(2 · 10) 

in which d4x= d3xdt and the integrations are to Ье taken over the whole volume with 
respect to х 1 and over the range (О, /З) with respect to t1• Р is now an operator arranging 
the operators in the bracket in such an order that the fourth components of coordinates in 
them are decreasing in magnitude. 

The grand partition function of the system is defined Ьу 

В=Тт[ехр(-аN-/ЭН)], (2·11)  

where N is an operator representing the total number of particles, say, of electrons, and а 
а selector which is related to the chemical potential per one particle µ through 

а=-(Эµ. 

Introducing the following notation 

B 0= T r[exp ( - a N - /ЗH 0) ], 
( · · · )  = T r [ e x p ( - a N - / Э H 0) · · · ] / T r [ e x p ( - a N - / Э H0) ],

we rewrite (2 · 11) in the following forms: 

В / 8 0 = (S(/Э)) 

= l + f 1 + f 2 + f з + ·  .. 

= ехр ( С1 + С2 + С3 • • · ) ,

where 

(2 · 12) 

(2 · 13) 

(2 · 14а) 

(2·14Ь) 

(2 · 14с) 

(2 · 15) 
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The relations between f n's and C, ,'s are essentially the same as those Ъetween the momen  
and Thiele' s semi-invariants in the theory of  probaЬility, that is, 

f п =  Л(С1)т1/т1 ! , 
'2:,lmг = n 

(2 · 16) 

З O represents the grand part1t10n function of  the free system in which the interactions are 
absent. ( · · · )  means the quantum-statistical average of а given field quantity denoted Ьу 
dots referred to the thermal equilibrium realized in the free system. 

In order to facilitate the explanation of our further analyses, we consider hereafter as 
an example the electron-phonon system, whose Hamiltonian is given Ьу

8> 

Н = Н 0 + Н1, 

Н о =   ё k а :  а,, +½ Q(IJ W (Ь,,:ь , , , + ь,vЬ,; ) ' k w 

+ g '  /2 f.;(IJ,v сь.,:ь n ,+ ьш ь,,: + ь и ,ь- w+ ь.: ь!:,,.) , 
'tv 

(2·17а) 

(2·17Ь) 

(2 · 17с) 

where a f  and ak represent, respectively, the creation and annihilation operators of  the 
electron with momentum k and energy ёk , Ь,,,  and bw are the correspanding operators for 
the phonon with momentum w and energy f.;ш, , ,, g and g' are, respectively, а coupling 
constant and а renormalization constmt given Ьу 

g'= ( s / - s ° ) / 2 s ° .  (2 · 18) 

The meaning of  the symbols appearing in (2 • 18) is as follows: V is the volume of' the 
system, М the mass of  an ion, N the total numbers of  ions, С the usual interaction con-
stant betw en electron and lattice, s0 the sound velocity of' free phonons. s0 is geг..erally 
different from the real velocity s because there are interactions between electrons and phonons. 

Now let us define quantized wave functions of electrons and phonons Ьу 

ф* (х) = v-1/2 a: e - ik •x, 
k 

(2 · 19) 

Making use of  the commutation relations 

four dimensionalfields ф * ( х ) = е х р ( t Н0) ф* (х ) ехр ( - tН0) etc. are easily shown to become 

ф*(х) = v - 1 1 2  a : e - ik•xHk\ 



А New Approach to Quantum-Statistical Mechanics 355 

( 2 · 2 0 )  

w 

Furtherm.ore one can verify Ьу а direct calculation that 

or ( 2 · 2 1 )  

Н1 (х) =gф*(х)ф(х)ер(х) +g'ep(x)ep(x). 

From ( 2 · 1 4 ) ,  (2•15)  and ( 2 · 2 1 ) ,  it can Ье seen that those which we have to know 
are rules for calculating the averages such as 

and (2 · 22) 

W е want to emphasize here that а remarkaЬle similarity exists between the evaluation o f  
З / З O and that of  the vacuum expectation of  the so-called S-matrix in quantum field theory. 
In fact, it will Ье shown in the next section that all the rules of calcul.:.tions of  the vacum 
expectation o f  the field quantities in quantum field theory can Ье used in the present case 
with only slight modifications. 

§ 3. Computation ruleв7>9>10> 

It will Ье found convenient in later analyses t o  use in place o f  the operator Р 1n 
( 2 · 2 2 )  another operator Т defined Ьу

9> 

(3 · 1) 

where др takes 1 or - 1 according as the character of the permutation o f  the electron 
operators involved is even or odd in going from the written order to the one re-arranged Ьу 

Р. O f  course it holds that 

(3 ·2) 

i f  Sj(ф*ф) is any :functional ot а product of  ф*(х,)ф(х1) 's as in ( 2 · 2 2 ) .  Now let us 
find the computation rules for (T[Sj  (ф*ф) ] )  and ( Р Ш  (ер)]), where   (ер) in any fнnc-
tional of  а product of  ер (х) 's. In the first place, we decoшp:>se ф* (х), ф (х) and 9 (х) into 
two parts, respectively according t o

ф*(х) =Фt(х) +Ф�(х),

ф(х)=Ф+(х) +Ф-(х), 

ер (х) ='f!+ (х) + 'Р- (х).

{3 ·3) 
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For а given product Х 1Х 2···Х ,., where X i is any one of the components introduced in (3•3), 
we define an Nproduct Ьу 

(3 ·4) 

in which the right hand side is а product of the same factors Х 1Х 2···Х п  but ordered in 
such а manner that all . the operators with suffix - stand to the left of all the operators with 
suffix + and, among the electron operators with the same suffix, all the operators with * 
stand to the left of those without *· i'JP determines the sign of the permutation in the 
same way as in ( 3 • 1). *> For instance, 

N[sb* (х) ф(х') ]=N[Фt (х) Ф+ (х') +ФНх)ф_ (х') +Ф'!. (х) Ф+ (х') +Ф'!:. (х)ф_ (х')] 

=Ф! (х) Ф+ (х') - ф _  (х')ф! (х) +Ф'!. (х)Ф+ (х') +Ф'!:. (х) Ф- (х')' 

N[ф* (х1) Ф* (х2)ф(х3) ]=ф'!. (xi) ф'!. (х2)ф_ (х3) +ф'!. (х1) ф'!. (х2) Ф+ (хз) 

-ф'!:. (х1) ф _ (хз) Фt (х2) + ф'!. (xi) Ф: (х2) ф + (хз) + ф'!. (х2) ф _ (хз) Ф: (х1)

-ф'!. (х2) Фt (х1) Ф+ (хз) +Ф-(хз) ФНх1) Ф! (х2) + Ф! (х1) фt (х2) Ф+ (хз) ,

N[So (х1) So (х2) ]=So- (х1) So-(x2) + So- (xi) So+ (х2) +So- (х2) So + (х1) + So+ (х1) So+ (х2) , 

N[So (х1) So (х2) So (хз) ] =  So- (х1) So- (х2) So- (хз) +So- (х1) So- (х2) So+ (хз) 

+ So- (х1) So- (хз) So + (х2) + So- (х1) So + (х2) So + (хз) + So- (х2) So- (х: ) So + (xi) 

+ So- (х2) So+ (х1) So+ (хз) +So- (хз) So+ (х1) So+ (х2) +So+ (х1) So+ (x2) So+ (хз) ,

and so on. Then we can show that an arЬitra1·y Т product of electron and phonon field 
operators is always converted to its corresponding N product through а simple relation. For 
Т[ф* (х) ф (х') ], it is easy to verify Ьу а direct calculation that 

1 

N[ф*(х)ф(х')]+[ФНх), ф_(х')]+ t>t '  
Т[ф*х)ф(х')]= (3 ·5) 

N[ф*(х)ф(х')]+[Ф!(х), ф_(х')]+ - [Ф* (х) , ф(х')J + t<t'. 

For P[So(x)So(x')], we get 

1 

N[So(x) So (х')] + [So+ (х) ,So- (х') ]-
P[So (х) So (х')] = 

N[So (х) So (х')] + [So + (х'), So- (х) J -

Thus if we define two functions S(x-x') and D(x-x') Ьу 

1 

[Ф! (х), Ф- (х') J+ 
S(x-x') = 

[Фt(х), ф_(х')J+ - [Ф* (х) , ф(х')J+

(3 ·6) 

t>t '
(3•7) 

t<t' 

* )  Note that there exists а slight dilference between our definition of N-product and that шеd in
quantum field theory. This dilference arises from the fact that Ф+ * (х) and Ф+ (х) (or Ф-* (х) and Ф- (х)) do 
not necessarily anti-commute with each other, and ther,fore we have to take care of their order in the product. 
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{ 
[So+ (х), So-(x') J- t >  t' 

D(x -x ' )  = 
[So+ (х'), So-(х) J- t < t',

357 

(3 ·8) 

the Tproduct with two factors is expressed as а sum of  the corresponding N-product and 
S or D function : 

Т[ф* (х) ф(х') ]=N[ф*  (х) sb(x') ] +S (x - x ' )  , 

P[sc>(x)sc>(x') J=N[sc-(x) So(x') ] + D ( x - x ' )  

(3 ·9) 

(3 ·9Ь) 

Trying sim.ilar calculations for the T-products with more factors than two, we are led to а 
conclusion that any T-product can Ье expressiЬle as а sum of terms, each of  which is 
composed of  an N-product multiplied Ьу S or D functions. More correctly, this statement 
will Ье mathematically expressed in the following two lemmas :10J 

L e m r n a  I For any product of  So(x)'s denoted Ьу  (So), it holds that 

where So' (х) is defined Ьу 

So'(x) = So(x) + J d4x'D (x- x1) д/дsс- (х') .

д/дsс- (х) is an operator characterized Ьу the commutation rela.tion, 

[д/дsс- (х) , sc-(x')J-=д(x-x'), 

that is, an operator representing functional differentiation with respect to So (х). 

(3 · 10) 

(3·11) 

(3 · 12) 

L e m m a  I I  For any product of  ф*(х)'s and ф(х)'s, which is denoted Ьу S';}(ф*ф), 
it holds that 

T[S';}(ф*ф)] = N [S';} (ф*'ф')], 

where ф*' (х) and ф' (х) are defined Ьу 

ф*' (х) = ф* (х) + Jd4x'S(x- x') д/дф(х'), 

ф' (х) = ф(х) -J d4x'S(x' - x) д/дф* (х'), 

(3 · 13) 

(3 · 14) 

respectively. д/дф*(х) and д/дф(х) are operators characterized Ьу the following commutation 
relations : 

[д/дф(х), ф(х')]+ = [д/ дф* (х) , ф*(х')J+ = д(х- х') , 

[д/дф(х), ф*(х')J + = [д/ дф* (х) , ф(х')J + = О. 
(3 • 15) 

А proof of these Iemmas will Ье given in appendix. ( 3 • 9) are the special cases of  ( 3 • 1 О) 
or ( 3 • 13) • It should Ье noted that the above results are valid for an arbltrary choice of  
the manner of  decomposition (3 • 3 ) .  W e  can, therefore, decompose the field operators in 
such а way that the resulting computation rules becomes as sim.ple as possiЬle. А possiЬle 
good choice will Ье such as to make the averages of' N-products (N[ф*(х)ф(х')]) and 
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(N[So(x)So(x')]) vanish: 

( N [ ф *  (х) ф (х') ] )  = О, (N[So (х) 9' (х') ] )  = О. (3 • 16) 

This  choice yields for S(x-x') and D(x-x') the results of  the form: 

t> t', 

(3 • 17а) 
t<t', 

D(x-x') = � (hws/2V) [ ( Nw+ 1) e•и•(ж-ж1)-hwsJH ' 1 

(3 ·17Ь)  

where [ k and Nw represent the average numbers of  free electrons with momentum k and 
of  free phonons with momentum w in thermal equilibrium at temperature Т, namely 

f k =  (a/:ak) = (e"HEk + 1)-1

N u . =  (b.Jbw) = (eMw•- 1) -1. (3 · 18) 

( 3 · 1 7 )  are readily proved with tЬ.е help of  ( 3 · 9 ) ,  ( 3 · 1 6 )  and ( 3 · 2 0 ) .  Although the 
averages of  Nproducts of  higher order do not necessarily vanish, it happens that they are 
such small quantities that their contributions to the grand partition function can Ье ignored 
in the limit of  N--нп, V - o o  (keeping N / V  as а constant). То see this fact, we shall 
consider ( Т[ф* (х) ф (х) ф* (х') ф (х') ] )  as an example. According to the lemma I I ,  we get 

(Т[ф* (х) ф (х) ф* (х') ф (х') ] )  = ( N [ ф * '  (х) ф' (х) ф*' (х') ф' (х') ] )  

= ( N [ ф *  (х) ф(х) ф* (х') ф(х') ] )  -S(x-x ' )  ( N [ ф *  (х') ф(х) ] )  

-S(x ' -x)  ( N [ ф *  (х) ф(х') ] )  +S(x-x) ( N [ ф *  (х') ф(х') ] )

+S(x'-x') ( N [ ф *  (х)ф(х) ] ) - S ( x - x ' ) S ( x ' - x )  +S(x-x) S (х' - х ' )

= ( N [ ф *  (х) ф(х) ф* (х') ф (х') ] )  -S(x-x')S(x' - х )  

+S(x-x)S(x'-x'), (3 · 19) 

in which the condition ( N [ ф * ( х ) ф ( х ' ) ] ) = О  has been used. O n  the other hand, i f  one 
compute the left-hand side of  (3 • 19) directly, it will follow that 

( Т[ф* (х) ф (х) ф* (х') ф (х') ] )  

{ 
v-2        (a/:aia:.a,.)e-i[(k-l)oo+(m.-n)a,l]+(ek-el)t+(E.,.-en)I'

k l 1 n , 1 1  

v-2 " ' 1  " ' 1  " ' 1  " ' 1  (а * а а* а \ e-i[(k-l)a,I + (m-n)ж]+ (ek-El)tl + (е. , .  -En)t ..L.J ..L.J ..L.J ..L.J k l "• п1 
k l п. п 

t> t', 

( 3 · 2 0 )  
t<t' 

T h e  average (a1tai at .a,.) vanishes for all values o f  (k l т п) except for the follwing three 
cases : 

а) k = l  m = n ,  
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Ь) k = n  l = m ,  

с) k = l = m = n .  

359 

Referr-ing to the definition o f  S(x-x') given Ьу (3•17а) ,  one can easily see that case а) 
gives us the term S(x-x)S(x'-x') in the right hand side o f  ( 3 · 1 0 ) ,  and the case Ь) 
t'he term S(x-x')S(x'-x), so that 

( N [ ф *  (х)ф(х)ф* (х') ф(х') ] )  = v-2  (a//a kaf ak) , (3 •21) 
k 

which is, however, smaller than the other two terms Ьу а factor 1/V ,  owing to the con· 
traction o f  the summation over momenta from douЬle to single. The same reasoning 
prevai:ls for all the averages o f  Nproducts, and the average o f  an Nproduct with 2n factors 
is generally shown to Ье а quantity o f  the order o f  ( 1 / vn-1) i f  the c-number terms com· 
posed o f  S(x-x') and D(x-x') alone are regarded as the quantities o f  the order o f  unity. 
Thus, on disregarding all the averages of  Nproducts, we are led to а simple computation 
rule for ( Т [ Н1 (х1) · · ·Н1 (х.,,) ] ) ,  that is; 

(1) substitute for every field operator ф*(х), ф(х) and So(x) the quantities ф*'(х),
ф' (х) and rp' (х) defined Ьу (3 · 14) and (3 · 15) respectively, 

(2) perform the operations indicated Ьу д/дф*(х), д/дф(х) and д/д'f(х) with the
help o f  the commutation relations (3 • 12) and (3 • 15) ,  

(3) retain only such terms that do not contain N-product as а factor. 
aW can reformulate these results Ьу noting that equs. (3 · 11) and (3 • 14) can Ье re· 
spectively in the form 

where 

ед
' f  (х) е - д =  'f1 (х), 

еr,ф* (х) e-r. = ф*' (х), 

еr,ф (х) e-r. = ф' (х),

д=½ J J dxdyD(x-y) д/д'f (х) д/ дrр(у),

I =  нdхdуS(х-у)д/дф(у)д/дф*(х), 

(3 ·22) 

(3 ·23) 

as can Ъе readily proved Ьу а direct calculation. Let ®(ф*,  ф, So) Ье any functional o f  
the :field operators ф*(х), ф (х) and 'f (х). then 

(Т[®(ф*, ф, rp)]) = ( N [ едеЧ (ф*, ф, rp)e-дe- r.J) . (3 •24) 

In this formalism the grand partition function given Ьу (2 • 14) can Ье put into а compact 
form: 

В /80= ( T [ e x p - j H1 (x)dx]) = (Т[®])

= ( N [ eдer.e e- дe- r.] )
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or 

( 3 • 2 5 )  

because we can disregard the factor е-де-: :: since there is nothing for it to operate on. SeriaI 

expansion o f  exponential function in powers o f  Jн 1 (x)dx leads us to the fonnula (2 · 14Ь).

l n  actual calculations dealing with eq. ( 3  · 2 5 ) ,  it is more convenient to employ the
so-called Feynman graphs. Each tenn in the expansion o f  the right hand side o f  ( 3  • 25 )  
can Ье analyzed into various Feynman graphs according to · the following rules : O n  carrying 
out the rearrangments o f  operators and retaining only the terms which do not contain 
Nproduct, for every factor D(x-x ' )  а dotted (phonon) line is drawn connecting the points 
х and х'; for every factor S(x-x ' )  а directed (electron) line is drawn from х to х'. Thus
each term in the expansion o f  the right hand side o f  (3 ·25)  is composed o f  а numbeг 
o f  Feynman graphs, to each o f  which а product function of S(x-x ' )  and D(x-x ' )  cor· 
responds. The Б.nal result we want is obtained Ьу integrating with respect to all the
coordinates involved in each Feynman graphs and Ьу summing up all the terms contributed
from possiЬle Feynman graphs. 

§ 4 .  Dlustrat ions

Having estaЬlished the computation rules, we will apply them to the calculations o f

, .  and С" with small п for the electron-phonon system. What  we are going to calculate is. 

  .. = ( - 1 ) " / n ! J ,  .. J ( T [ H 1 ( x1) . .  , H1 (x,.) ])dx1 , . .  dx,.,

Н1(х) =gф*(х)ф(х)rр(х) + g 'rp (x) rp (x) . 
(4· 1) 

l n  analyzing   .. into Feynman graphs, the following view points are useful: W e  think
that to each ф* (х) corresponds an electron line starting from the point х, to each ф (х}
corresponds an electron line entering into the point х, and to each rp (x) coreesponds а phonon
line joining at the point х. Thus Н 1 (х) represents а point х, at which either three lines► 

two electron lines and а phonon line, join with strength g, or two phonon lines are con· 
nected with strength g'. W e  can, therefore, carry out the analysis of  ,,. Ьу drawing all the
graphs in which п vertices are connected with each other, either Ьу two electron lines outgoing
and incoming and а phonon line, or Ьу two phonon lines. W e  need not consider the term
in  ,,. which contain the factors rp (x) 's of  odd numbers. Furthermore, many graphs may
Ье left out o f  consideration on account o f  the rule that an electron line is forЬidden to 
join а point to itself. This additional rule comes out from the fact that since а constant 
factor S (О) corresponds to such an electron line that joins а point to itself, the integration

with respect to the coordinate of  this vertix is to Ье reduced to the fonn jD(x)dx, which 

evidently vanishes in virtue o f  (3 • 17Ь). I n  Fig. 1 various Feynman graphs appearing in 
the lower order tenns o f    ,.'s are shown. А comparison o f  the results from Feynman gra-
ph analysis with that o f  а straightfoward application o f  the computation rules reveals that 



А New Approach to Quantum-Statistical Mechanics 361 

the sign o f  each graph is determined a.s + or - according to whether the number o f
closed electron line loops involved in the Feynman graph is odd or even. 

е.,,,.-. 
J \ 
....__ __ ,. 
{,= с; f C2A 

е 

{ С,8С, 

,,·--, , \ ., ♦ 
\.,...__ ...  ' 

С28 

.L  ,,. ,.1с, 

,,,-...... , . : 
\. ... ,-----, 

4- : , __ ,,, 
.l с2 
2 , 

C.r.sC, 1 3 
3' с, 

Fig. 1. Various Feynman graphs appearing in  1,  2,  3 and  4• 

Referring to the relations between   .. and С" given Ьу ( 2  · 1 6 ) ,  we can see from Fig. 1 
that С" is exclusively constructed o f  connected Feynman graphs with k vertices. This sesult 
is o f  some importance, because the free energy o f  the system is given Ьу 

F= - N µ - k T  log В 

= - N µ - k T  I o g B0 - kT ( C1 + C2 + Cз···) ,
(4·2) 
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which is to Ье proportional to the whole volume of' the systlml V. For every conn ed 
Feynman graphs, the result o f  the integrations with respect to all i;he invJ>lved coordinates 
but one turns out to Ье independent o f  а remaining coordinate, and the integration with 
respect to the last coordiщtte simply gives а factor f3V, so that the аЪоvе requirement that 
( 4 • 2 )  is to Ье proportional to V is always fulfilled i f  every Ck consist o f  connected Feyn·
man graphs alone. I t  should Ье noted that this proportionality F се V is not justified when 
the averages o f  Nproducts disregarded аЪоvе are take into consideration. 

The  integrations with respect to the coordinates can Ье quite easily performed, at least 
for small п. W e  shall show below only two lowest order terms in Fig. 1 · 

С1 = j D ( o ) d x = f 3 V   i w s ( N w + 1 / 2 ) ,  

Си = П S ( x - x ' ) S ( x ' - x ) D ( x - x ' ) d x d x '  ( 4 · 3 )  

which are in agreement with those obtained Ьу other authors.8> 
The merits o f  the present method are, apart froin the simplicity o f  its computation 

rules, that it enaЬles us to get а deep itt&ight into the st;ru.ctures o f  the higher order per· 
turbations through the Feynman graphs, and hence to go beyond the usual perturbational 
calculation. For instance, we .can carry out а partial sцmmation o f  serial terms up to infinite 
order, Ьу adding certain special Feynman graphs. Thus the so-called renormalization pro-
cedures developed in quantum field theory will Ьесоmе availaЬle to various degrees. A n  

111odif1ed phonon 11ne 
2 - - - - - - - - - - - - - - - - - Z ( - - - - - • - - - - ) + 2  { - - - - • - - - - • - - - - ) - - -

111od1f1edphonon eцerg 

•С1 + С
г 

+ О  +  с
4-

·•.. •• = а sum o t  а н  coмected Feynman graphs

- •......••
Fig. 2. Elimination of the term g'rp(x)rp(,c) in Н1(,с). This is effected Ьу employing а 

re-defined phonon line in place of • • • • •-
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example: l t  is immediately suggested Ьу inspecting Fig. 1 that the effect o f  the second 
term in ( 4 • 1) can Ье eliminated Ьу re-defining the phonon line and the phonon energy as 
illustrated in Fig. 2. 

This means in the mathematical formula that D ( x - x ' )  is to Ье replaced Ьу 

D* ( х - х ' )  = D ( x - x ' )  - 2 g '  J v ( x - x 1) E (x1- x ') dx1 

+ (2g') 2J J v ( x - x 1) D (х1 - х 2) D ( x2- x') dx1dx2 · " ( 4 · 4 )  

The evalua.tion o f  D* ( х - х ' )  is not difficult (see appendix В),  the result bein g  conveniently 
expressed in terms o f  the Fourier component as 

D* (k ,  t) = 1 / g ' Г '  f - " D ( f k ,  t )d f ,
. , ]  

( 4 · 5 )  

where 

D ( k ,  t) = f D ( x ,  t)e1k •"'d3x , (4·6) 

and 

а =  ( 1 + 3 g ' ) / g ' .  (4·6) 

( 4 • 5 )  and ( 4 • 7 )  show that for small g '  D* ( х - х ' )  is nearly equal to D ( х - х ' ) ,  whereas 
for large g '  it becomes proportional to 1/g ' .  This reduction in magnitude o f  D* ( х - х ' ) ,  
in tum, acts to prevent the sound velocity from suffering large alteration due to electron· 
phonon interaction. Such а situation remedies а certain difficulty occurred in а perturbational 
treatment of  sound velocity re-normalization. l lJ  But we shall leave this proЬlem for another 
occasion. 

§ 5. Non-pertu.rbational treatment

The treatment described in the preceding sections is essentially an expansion o f  the 
grand partition function in powers o f  the coupling constant, so that, for the case o f  strong 
coupling it will not Ье useful as it stands. I t  is, however, possiЬle to put forward а method 
which is free from the serial expansion procedure.10

) 

W е consider а set o f  functions defined Ьу 

G1 (х; х') = ( Т [ ф *  (х) ф(х') е ] ) / ( Т [ е ] ) ,  

G2(xy; х'у') = ( Т [ ф *  (х) ф* (у) ф(у')  ф (х') e J ) /  ( Т [ е ] ) ,  (5 · 1) 

G3 (x yz ; x'y'z') = ( Т [ ф *  (х) ф* (у) ф* (z) ф(z') ф(у')  ф (х') ® ] ) / ( Т [ е ] ) ,  

and so on, where 

Н 1 (х) = gф* (х) ф (х) rp (х). (5 ·2) 
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(For the sake o f  simplicity, we shall omit the term g' ( f (x)r ; (x)  for а while.) Following 
the tenninology used in quantum field theory, we shall call them the Green function o f  
one-electron, o f  two-electrons and so on. As  is evident &om the definitions, however, they 

correspond to the coordinate representation o f  the reduced density matrices in the grand 

canonical ensemЬle, and play а role similar to the molecular distribution fu.nction in cla.ssical 
statistical mechanics. For phonon we define in а similar way 

(5 ·3 )  

Now, we wil l  show that these Green functions satisfy а set o f  coupled integral equations. 

Т о  do this we apply the equation (3 ·24)  to (5 · 1) and (5 •3) .  Then, for instance, we 
obtain 

Here let us commute eIJ through ф* (х). Referring to the relations 

еI ) ф* (х) = Ф *  (х) e:i; + f dy S(x - y ) а ;  аф(у) e:i; , 

е:�; ф (х) = ф ( х )  eIJ - fdy S ( y - x) aj aф* ( y ) e:i; , 

we see that the result is 

(5 •4) 

(5 ·5 )  

The tenn which contains the factor ф* (х) standig to the left o f  e:i; is omitted, because we 

are ig n or ing the average o f  Nproduct. Since the operator а ;  аф ( у ) commutes with IJ, we 

can perform the indicated differentiation in ( 5 • 6) Ьу noting that

and we obtain 

[а /аф(у ) ,  ф(х') J+ = а ( у - х' ) , 

а ; а Ф ( r )  ® = g Ф *  (у)  ({)( у ) е, (5 •7) 

G1 (хх') = S ( x - x ' )  + gf S ( x - y ) dy ( N [ eAeIJ ф* ( у ) ф(х') ({) ( у ) 6])/(Т[®]). (5 •8)

Let us fu.rther commute е4 through ф* ( у ) , ф ( х') and ([) ( у ) , referring to the relations 

and 

The result is 

a;a(f)(z) 6 =  - g ф *  (z)Ф(z) е. 

(5 ·9) 

(5 · 10) 

G1 (хх') = S ( x - x ' )  - g 2H dy dzS(z - y ) D ( y - z) ( Т [ ф *  ( у ) ф(х' ) ф* ( z ) Ф ( z ) 6 ] ) / ( T [ 6 ] )  
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(5 · 11) 

where the use of the definition for G 2 (xy ; х'у') has been made. Thus G 1 (хх') is shown 
to Ье coupled with G 2 ( ху ; х' у') through an equation ( 5 • 11) . Repeating the same pro· 
cedures, w e  can easily prove that G k is directly tonnected with G k - l  and G k+1 through an 
integral equation similar to ( 5 • 11) . For example 

G 2 (xy ; х'у') =S(x-x') G 1 (уу') - S ( x - y') G 1 (ух') 

- g 2f S ( x - x 1)D (x1- y 1) G з(yx 1y1 ; y'x'y 1)dx1dy1• (5 · 12) 

These coupled equations connecting the Green functions of varicus order bear а resemЬlance 
to the integral equations satisfied Ьу the molecular distribution functions of various orders, 
discovered Ьу Born-Green 12> and Kirdwood 13> in classical statistical mechanics. Although it is а 
very difficult task to solve these equations, one might Ье аЫе to find an approximation of 
breaking off the infinite chain of equations into а closed system of few equations. 

It is, however, more convenient to handle an equation containing one electron Green 
function alone, if such an equation exists. In fact, w e  can derive such an equation Ьу 
 aking use of а trick of introducing an auxiliary extemal field.14J W е define ® in place 
of (5 ·2) Ьу 

® = e x p [ - J  {gф*(х)ф(х)<р(х) +Ф*(х)ф(х)ф(х)}dх], (5 · 13) 

where ф(х) is а c-number field which is to Ье made vanish in the final result. T h e n  
following the same procedures as in deriving ( 5 • 11) , w e  get 

G 1 (xx') =S(,.-x') -f dy S (x- y) ( T [ф (x') д/дф( у) ®])/(Т[®]). 

N o w  in view of (5 • 13) it immediately follows that 

а;аф(у) ® =  {gФ* (у) q,(y) + Ф С у) Ф *  (у)} е, 
and hence 

G 1 (хх') =S(x-x') + j S(х-у)ф( у) G 1 (yx')dy

+ g f  dy S (x- y) ( N [ е де"Еф * (у) ф(х') <р(у) ® ] )  / ( Т [ ® ] )

=S(x-x') + j S ( x - y)ф (y) G 1 (yx')dy

(5 · 14) 

T h e  last expression in (5 · 14) has been attained !:у commuting ед with <р(у) and carrying 
out the differentiation. In order to express G 2 in terms of G 1 , w e  have to regard G 1 (хх')
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as а functional of the auxiliary Б.eld ф ( х) • Then we can proceed as follows : 

G i  ;  yf) =(Т[ф*(х)ф* (f)ф(f)ф(у)е])/(Т[е]) 

= -(Т[ф*(х)ф(у)11/оф(f)е])/(Т[е]) 
= - a f  11ф(f) (Т[ф* (х) sb (у) е ] ) / ( Т  [е]). (5 • 15)

Inserting (5 • 15) into (5 • 14) and carrying out а slight manipulation, we arrive at 

G(xx') = S (xx') + J S(х-у)ф(у) G ( y, x')dy 

+ g 2П S ( x - y)D (y - f) о/оф(f) G ( yx')dbly.

O n  the other hand, S(x-x') satisБ.es the following differential equation: 

- + - 1 1  S(x, t)=l1(x)l1(t)=l1(x),[ д -ь2 ] 
дt 2m 

(5 · 16) 

(5 · 17) 

which can Ье easily proved Ьу а direct operation of (д/дt+&
2/ 2т •11) on S(x) deБ.ned Ьу

(3·17а). Operating (д/дt+-Ь2/ 2т •д ) on (5·16) from left, and making use of (5•17), 
(5 • 16) is converted to 

{  + 11}G(xx') = о(х-х') +Ф (х) G(xx')
дt 2m

(5 · 18) 

А similar equation for one-nucleon Green function in meson Б.eld was solved Ьу Edwards 
and Peierls Ьу introducing а special technique of Fourier transformation in functional space.

15> 
А similar method тау Ье availaЬle in the present case. 

Another and more tractaЬle method to deal with the grand partition function will Ье 
the generalized Hartree approximation. Recently Kinoshita and N a m b u  have developed а 
theory of Hartree Б.eld for а system composed of а number of particles and а intermediary
Bose Б.eld.16> А similar method will Ье also applicaЬle to the present case, and will Ье 
especially useful for the investigation of the cooperative phenomena such as superconductivity. 

W e  shall take again the electron-phonon system as an example. According to the 
general theory described in § 2 and § 3, the grand partition function is given Ьу

Е / Е 0 = (Т[ехр {-j Н 1 (x)dx} ]), (5 · 19) 

which is valid for an arЬitrary choice of Н 0 and Н 1• W e  assume, therefore, that the free 
Hamiltonian has, instead of ( 2 • 17Ь) , the following form 

(5 ·20) 

and the interaction Hamiltonian is chosen so as to make it hold that 
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JHl (x)dx= JetI70H1e-tii'oJt=½H Т[ф* (х)ф(х-х') ф(х') ]dxdx' 

+¼Jf P[r(x) x ( x - x ' ) r ( x ' )  ]dxdx' + g j Ф *  (x)ф(x)r(x)dx,

367 

(5 ·21) 

where ф ( х - х ' )  represents а sort of Hartee field for electron, Ek the energy of electron 
moving in this Hartree field, х ( х - х ' )  and Wu, are the corresponding quantities for phonon. 
ф* (х), ф (х) and r (х) are respectively defined Ьу 

ф* (х) = v - 1 / 2    a f  e-ik •oo+ Ek ',
k 

w 

(5 •22) 

in place of (2 ·20) .  With the aid of (5•22),  each term in the right hand side of 
(5 ·21) can Ье written down as а function of a f ,  ak , Ь;'; and bw , the results being 

½ НТ[ф*(х)ф(х-х')ф(х')]dхdх' 

¼ f P[r(x)x(x-x ' )r(x ' ) ]dxdx'  

= ½  Jdte t .iio  Ww x (w , - W w )  (bJbw + bw bJ + bw b- w + b;';b:':w ) Je-tнo, 

g j ф*(х)ф(х)r(х)dх 

= r dte1ffo [g    (Ww/2V) 112 (af - w akь: : + ai :+ w ak bw ) Je- 1ffo,J k w 

(5 •23) 

where ф(k, Е) and x ( w ,  W )  are, respectively, the Fourier-Laplace transform of ф(х) and 
Х ( х) defined Ьу 

ф(k,Е) = JjФ(x, t)eik •oo- EtJ Bx Jt,

x ( w ,  W )  =Н х ( х ,  t)ei k •oo- WtJ 3x Jt.

Combining (5 • 23) with (5 • 20) we see that 

(5·24)  

Fl1 = g   LJ(Ww/2V) 112 (a'j;_.,,a"b,;t + a%+ w ak bw ) +  ф(k, - E k ) af ak- ½   ф(k, - E k )
/а ,и k k 

,,, 
Since the sum of Н0 and Н1 has to Ье taken equal to the original total Hamiltonian given 
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Ьу ( 2 • 17) , apart from а constant, 

Н0+Н1 = Н+С, 
it  follows Ьу comparing ( 5 · 2 5 )  with ( 2 · 1 7 )  that 

Sk = E k + ф(k , - E k ) , 

g ' = x ( w ,  - W w ) ,  

C = - ½ 2 J Ф ( k ,  - E k ) . 

(5  ·26а) 

(5 •26Ь) 

(5 ·26с) 

(5 ·26d) 

Eqs. (5 •26)  provide physical meanings for the Hartree field ф(х) and х ( х ) ,  that is, the 
Fourier-Laplace component o f  ф(х) equals the difference between the enene1y cf· а free 
electron and that of  an electron moving in the Hartree field, and the Fourier-Laplace com-
ponent o f  Х (х) gives what we called renormalization constant in § 2. I n  order to determine 
ф(х) and х (х )  self-consistently, we shall apply the theory of  Green function described in 
the beginning o f  this section. Define the Green function G(xx') and Ll(xx') Ьу 

with 

G(xx') = ( Т [ ф *  ( х ) ф ( х ' ) е ] ) / ( Т [ е ] ) ,  

Ll(xx') = ( T [ S o ( x ) S o ( x ' ) e ] ) / ( T [ e ] )  

е = е х р [ - {gjФ*(x)ф(x)So(x)dx+ JJ ф*(х)ф(х-х')ф(х')dхdх'  

+ ¼  н9' (х) х ( х - х ' )  9' (x')d:\dx'}] 

(5 •27)  

(5 ·28)  

I f  we content ourselves with the expressions up to the second order in the coupling constant 
g, the coupled equations for G ( x - x ' )  and L l ( x - x ' ) ,  which are derived through the pro· 
cedures described above, can Ье easily solved Ьу an iteration procedure. W e  shall give 
here only the results ; 

G(xx') = S ( x - x ' )  + ½ H S ( z - y ) ф(x- y ) S (z - x') dy dz 

+ g2J J S ( х - у )  D (  y - z )  S ( y - z )  S ( z - x ' )  dydz, 

д(хх') = D ( x - x ' ) - ½ H D ( x - y ) x ( y - z) D (z - x') dydz 

+ g2j j D ( х - у )  D ( x '  - z )  S ( у - z) S ( z - y ) dy dz. 

(5 ·29) 

(5·30) 

I n  this approximation, it will Ье natural to determine ф ( х) and Х ( х) in such а way that 

G(xx') = S ( x - x ' ) ,  Ll(xx') = D ( x - x ' ) ,  (5·31) 

Ьecause the equations ( 5 • 21 )  state that electrons and phonons behave in the respective 
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Hartree field аз i f  they are inde p endent o f  each other. This statement is in accord with the 
bask assumptioninHartreeapproximation. From ( 5 · 2 9 ) ,  ( 5 · 3 0 )  and ( 5 · 3 1 )  ф(х) and 
х ( х )  are determined аз 

ф ( z - у )  = - 2 g 2 D ( y - z ) S ( y - z ) ,

x ( y - z )  = - 2 g 2S( y - z) S (z - y) .

(5  ·32)  

( 5  ·33)  

Here we shall briefly discuss the results derived from the equations ( 5 • 3 2 )  and ( 5 • 3 3 )  , 
leaving the details to а later puЬlicatoin. 

Performing the Fourier· Lapace transformations of ( 5 · 3 2 )  and ( 5 · 3 3 )  with the help 
o f  ( 3  • 17 ) ,  we readily get 

x ( w ,  - W k ) = 2g2
  [ k ( 1 - f k - ш ) (5  ·35)  

V k E k - w- E k + Ww 

Referring to (5 • 2 6 ) ,  the equation (5 · 35)  gives the change in the sound velocity o f  phonon 
сашеd Ьу the electron·phonon interaction, i f  the dispersion o f  sound velocity is ignored. 
The result obtained here is nearly the same аз that calculated Ьу Frohlich. (5 ·34)  comЬined 
with ( 5 · 2 6 а ) ,  on the other hand, give an equation to determine E,k • O n  neglecting N w  
at very low temperatures, it Ьecomes 

Ek = ёk - L  &w s 
( l - f k - ш )

V т E k _.,, - E k + Ьw s . 
(5  ·36)  

I t  is interesting to note that the same equation аз (5 ·36)  was derived Ьу Bardeen in а 
quite different way.17> Although the nature of  the solution o f  the equation (5  · 36)  was 
already discussed Ьу him, а more careful investigation o f  this equation has been made Ьу 
the present author. The result obtained agrees with that given Ьу Bardeen in its essential 
point. There exists а solution o f  (5 ·36)  in which one electron energy E k has а gap at 
Fermi surface for sufliciently strong coupling constant. The ground state in which all the 
states of lower energy are occupied Ьу electrons will correspond to а superconducting state 
at О0К . Temperature effect on energy spectrum is easily taken into account in the present 
method, and it is shown that the energy gap, dependent on temperature, Ьecomes to vanish 
above а certain temperature. Thus а sort of  phase transition is expected. А similar result 
was worked out Ьу Frohlich and Kuper18 J with one-dimensional model. The basic idea of  
the present method resemЬles rather that o f  Frohlich's than Bardeen's. Frohlich has assumed 
that а cooperative interaction Ьetween electrons and phonons produces such а potential for 
an electron аз to give rise to а splitting o f  the energy spectrum of the electron. I n  the 
present theory, we introduced explicitly а possessing а nature which Frohlich has assumed, 
and we have proved in а self-consistent manner that this potential actually gives rise to а 
splitting in one-electron spectrum even in three dimensional case, and hence brings the assemЬ-
ly o f  electrons into а special state which we want to call the superconducting state. 
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§ 6. Extension to Other Systems

The electron-phonon system so far considerecl. is а typical example, to which our method 
can conveniently Ье appliecl.. I n  extending our method to other system, it may happen that 
some modifications in the formalism are requirecl.. I n  this section we shall show that our 
method is easily extendecl. to а system in which many particles, obeying Fermi or Bose 
statistics, are interacting with each other through two-body potential. 

I n  the scheme o f  second quantization we write the Нamiltonian of  а systen in question as 

Н = Н 0+ Н 1, 

Н 0 = j ф* ( х )  р 2/ 2т ф(х ) d3х, (6· 1) 

Н1 = ½  Нф* ( х ) ф *  ( x ' ) J ( x - x ' ) ф ( x ' ) ф ( x ) d3x d3x 1, 

where ] ( х - х 1) represents the intera.ction potential between two particles located at х and 
х', р the momentum operator of  а particle. ф* ( х )  and ф ( х )  can Ье expandecl. into Fourier
series : 

ф* (х) = v - 1 / 2    aj;e-ik•"',
k 

(6·2) 

in which aj; and а1,, are as usual creation and annihilation operators o f  а particle with wave 
vector k, the commutation relations Ьetween them being given Ьу 

[a1,,,at,]± = ;Jk,k.1• 

( + Fermi, - Bose statistics) 

The grand partition function 8 can Ье written as 

8 / 8 0 = 1 +  1+  2+  з+ ··• 

= е х р ( С1 +с2+Сз···) 
with 

or more formally as 

where 

(6·3) 

(6 ·4) 

(6·5) 

First we consider the case of  Fermi particles. I n  applying the computa.tion rules derivi 
in § 3 to the present case, а difficulty arises from the intera.ction term 
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( 6 • 7 )  

which prevents us from accomplishing in а simple manner the t-ordering indicated in the 
right hand side o f  ( 6 · 5 )  . The  proЬlem can, however, Ье solved Ьу rewriting ( 6 · 7)  in 
the form 

Jн 1 ( t ) d t = ½ H  Т [ ф *  ( х ) ф ( х ) ] ( х - х ' )  ф* (х')ф(х') ]dxdx' 

- ½ ] ( О )  jФ*(х)ф(х)dх,

in which ] ( х - х ' )  is defined Ьу 

(6·8) 

] ( х - х ' )  = ] ( ж - ж ' )  д ( t - t ' ) . (6  · 9 )  

That  ( 6 • 8 )  equals ( 6 • 7 )  is easily verified Ьу а short calculation. Then, noting that for 
arbitrary T-products Т [  А] ,  Т [ В ] ,  ... 

[ Т [ А ] , Т [ В ] ,  , .. ] = Т [ А, В, , .. ] ,  

we obtain, in place o f  ( 6 • 6 )  , 

with 

е = е х р [  - ½нф* (х) ф ( х ) ] ( х - х ' ) ф *  (x')ф(x')dxdx' 

+ ½ ] ( О )  jФ*(х)ф(х)dх] ,

to which all the rules estaЬlished in § 3 are now applicaЬle. 

(6  · 10) 

W е have no trouЬle with the case o f  Bose particles. W е do not want to repeat here 
c,s long analysis, so that we give below only the lemma I I  modified so as to hold for both 

statistics. 
L e m m a  I I I  For any product о f ф * ( х )  and ф(х) denoted Ьу  (ф*, ф), it holds that 

in which Т = (=F1) P P and ф'*(х)  and ф'(х) are defined Ьу 

ф*'(х)  = Ф * ( х )  + j dх 'S (х -х ' )д /дф(х ' ) ,

ф'(х) = ф(х) ,= j d х ' S ( х ' - х ) д / д ф * ( х ' ) ,  

respectively. д/дф*(х) and д/дф(х) satisfy the following commution relations: 

[д/дф(х),  ф(х' ) ]± = [ д/ дф* (х) , ф * ( х ' ) ]± = д(х- х') , 

[д/дф(х) ,  ф * ( х ' ) ]± = [ д/ дф* (х) , ф(х ' ) ]± = О. 
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S(x-x') is given Ъу 

where 

о О·····О е 
с;А С1А С,в 

п 
  О·····О G 
с,;А С в С с. 

о о·, Q 
Q Gj) 
Q 
С2.д Czs Cie. С2.,, C.zE 

Fig. 3. Various Feynman graphs appearing in С1 and С2• Dotted 
line х······х' corresponds to ] ( х - х ' ) .  Directed line х  -х1  
corresponds to S ( x - x ) .  Х represents self energy ](О). 

that o f  Ichimura's calculation. I n  the notation adopted here, 
Ьу Ichimura Ьу his own method are written as follows :8> 

С1 = -½{1V-1  2 J  2J(]o'=F]k_i)f
k {,, 

k+l  

t>t '

t<t '  

A l l  the upper sig ns ot 
douЬled sig natures corre• 
spond to Fenni case and 
lower sig n s  to Воsе case. 

W e  can analyze  , .

or c k  into Feynm.an graphs 
Ьу drawing а directed 
(particle) line for every 
factor S(x-x') from х to 
, !  , and а dotted line con-
necting the points х and , !  
for every factor ] (  х - х ' ) .  
I n  the present case а 
particle line may join а 
point to itself. I n  Fig. 3 
the Feynman grapЬ.s ap-
pearing in the lower order 
tenns of Ck's are shown. 

I t  will Ье worth while 
to compare the results 
derived from Fig. 3 with 

the results for С k' s obtained 

( 6  • l l a )  

C2 = ½/12V - 2 2 J 2 J 2 J fk ( 1 =i= {k)f i fmUo=F ] k - l )  Uo=F ] k - т )
k+l+,n 

+ ¼ { 1 V -22 J 2 J 2 J 2 J  ( Jk - m =F ] k - и ) 2 

(1 =F f k )  (1 =F { , , ) f т f п ,
k k

+ \ - :::н ': ck + s i - E m  - c f l

where ] k is the Fourier component o f  ](х) defined Ьу 

] k = jJ (x )e1k •OOJ 8x . 

( 6  · l l b )  

W e  will show that ( 6  • 11)  are in complete agreement with our results. Inspecting Fig. 3, 
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our expression for С1 is readily written dQwn as 

С1 =½ ](о)  J S (o)dx-½ н ] ( х 1 - х 2) {S (о)} 2dxiJx2 

± ½ J J ] ( х1 - x 2) S (х1 - х 2) S (х2- х1) dx1dx2•

Noting that 

(6 · 12) 

S(o) = v-1 "i:ifk
k 

S ( x - , l ) S ( , l - x )  = - v -o     fk(1 =F [k1) e' (k-k')•(ж- жl)- (ek,- ek) 1,-,,1, 
k kl 

](О) =v-1  ]k, J1cx-,l)dx=]o, 
k 

(6 • 12) can Ье reduced to 

Cif .ВV= -½v-2 { - ]k[k, + lofk[k, =F ]kl-k {k ([k, =F 1)}
k k l  

which is just equal to ( 6 • 1 la).  It is seen from the above calculation that the teпn 

](О) JФ*(х)ф(х)dх in @?5 so Ьehaves as to subtract the self-energy from the final results. 

We тау, therefore, disregard this teпn hereafter, provide we keep in mind that the self-
energy parts are always to Ье subtracted. Then С2 is shown to consist of five integrals: 

С2 = =F4Cм+2C2в + BC20=F4C2D=F2C2E, 

См = ¼ J ··· J {S(O)} 2J (x1- x2) S (x2- xз) S (x3- x2)] (x8- x4) dx1 ···dx4 

=¼/92V -2
] /  /j,(fk=F1){,,fm, 

k l т, 

С2л = ¼ J · · · JS (х1 - х о) S (х2- х1) S ( х з - х4) S (х4- х3)] (х1 - х 8) ] (х2- х4) dx1 • • ·dx4 

=½.av-2
  

Uk-m) 2 
(fk=F1) (f,,=F1)f.,.fп, 

i +l- : . . ,,."' s k + c z - C m - C n  

С20 = ¼ J • .. Js(o)J(x1 -xo)S  (х2- Хз) S (х3- Х4) s (x4- X2)] (x3- X4) dx1 •' ·dx4 

=¼112v - 2
   lolk-Z[k({k=F1)fifm, 

k l m 

C2v =¼ J · · · J S (х1 -х2) S (х2- х3) S (х3- х4) S (х4- х1)] (х1 - х 2)] (х3- х4) dx· · ·dx4 

= t/12 v - 2 ]1,-l]k-m[k ( f  k =F 1) f i f  m, 
k l m 
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с2Е = ¼  f'' 'f s (х1 - x 2 ) S ( x2 - X3) s (х3 - Х4) s (x4-X1)J(x1-Xз)](x2-X4)dx1'' ·ах4 

= ½ p V - 2 2 J 2 ] 2 J 2 J  ] k - m ] k - n  ([k':f-1) ( [ i ' : f  1)fmfn• 
т.k+\-:::н: ck + 8i - 8m - 8 n

As to the evaluation o f  the above integrals, see appendix В. The summation of  these five 
integrals with given numerical coefficients immediately leads us to (6  · l l b ) ,  apart from the 
self-energy parts which can Ье cancelled out Ьу the integrals corresponding to the graphs 
С' 2.4, С '2в and С '2о in Fig. 3. 

A n  application o f  the method o f  partial summation over certain special Feynman graphs, 
which was proved useful in § 4, gives rise to an interesting result for the electrons inter-
acting with coulomb potential. l t  is suggested from Feynman graph analysis that the 
interaction potential ] ( х - х ' )  has better to Ье replaced Ьу 

] * ( х - х ' )  = ] ( х - х ' )  + 2 H J ( x - x 1) S (x1 - x2) S (x2 - x1)J (x2 - x') dx1dx2 

+ 22f' '' f ]  ( Х - Х1) s (xl - Х 2) s (Х2 - Х1) ] ( х2- Хз) s (х3- Х4) S ( х 4 - Х з ) ] ( х з - х ' )  ах•' •QX4 + '''
( 6  · 13) 

For coulomb potential ] ( х - х ' )  = e 2/ lx - x ' lд( t - t1) , the Fourier transform of ( 6 ·  1 3 ) ,  
integrated over t, Ьecomes 

_ 4:ire2 

-
k2-4: i re2Л(k) '  

лсk> = : Е  r s ( k ' ;  - t ) S ( k ' - k ;  t ) a t =   : Е  ( f k , - f k , - k  ) ·
V kl J V kl 8k , - 8 k 1- k 

( 6  · 14) 

This result shows us that the coulomb interaction between electrons is to Ье screened ( as 
1 / r - e - J . r / r ) ,  the screening constant А being roughly estimated as 

;_2= _4:ire2Л ( o) = _ 8:ire2 : Е  ( Эfk )   4:ire2m К,,..V k авk - ь2 ( 6  • 15) 

(К , , .=  the magnitude o f  wave vector of electron with Fermi energy) . 

The same result as ( 6 • 15) for the screening eff ect was derived Ьу Macke Ьу а variational 
calculation.19> 

Appendix А 

А Proof of  Lemma 1 

W е shall prove the validity o f  lemma I Ьу а mathematical induction. Assume tha:i 
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it is tme for some T-product TПJ(So)], i.e. that 

ТШ (So) ] = N [ g :  (So') ] .

375 

( A · l )  

Then i f  we can prove it for Т [So (х) g: ( S") ] ,  we can conclude that the statement o f  lemma 
I is valid, since for g : ( S o ) = l  and for g:(So)=So ( A · l )  is trivially true. Without а loss 
of  generality we can take g: ( So) as а product o f  п fa.ctors ; So ( х1) So ( х2) · · · So ( х, .) • When 

TПJ(So)] can Ье written as 

N o w  let us assume that 

Then 

T[So (х) g: (So)] = S" (х1) · · ·So (xr) So (х) So (Xr+1) "·So (х,,.) 

=X(So)So(x) Y(So)-

Here we decompose So(x) into two parts according to 

So (х) =So+ (х) +So- (х) • 

(А·2) 

(А·З) 

and transfer So- ( х) to the left through Х ( So) • and So + ( х) to the right through У ( So) • 
The  result is conveniently expressed as 

where 

{ 
[So + (х) ,  So (х') ] _  

,11 (хх') = 
- [ S o - ( x ) ,  So(x')J_

(А·5) 
t<t'. 

In order to obtain the N-product o f  Xs,,(x) Y from ( А · 4 ) ,  we have to bring Ьасk s,,_(x) 
to the right and So + ( х) to the left, becanse So- ( х) may stand to the left o f  So- ( х1) , 

So-(x2), ··· So-(x,.) and So+ (x) may stand to the right o f  So+ (Xr+ 1) , • • •  So+ (x, .) . Carrying 
out rearrangements needed for getting N-product, we can express the result in the form 

So- (x )X Y = N [So_ (x) X Y ] + jdx'[So_(x), So-(x')]_i3X/i3So_(x') У, 

X Y So+ (х) = N [ X Y So+ ( x ) J - jdx'[So+ (х) ,  So+ (х') ] _ X i3 Y / i3So+ (х') ,  

where operators i3/i3So+ (x) and i3/i3So_(x) are difined through 

[ i3/ i3So+ (х) ,  So+ (х') J - =  [ i3/ i3So_ (x) ,  So-(x') J - = д ( х - х ' ) ,  

[i3/i3So+ (x) , So-(x')]-=[i3/i3s,,_(x), So+ (x') J_ = O, 

(А·б) 

(А·7) 
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namely they represent functional differentiation. Since Х and У contain 'Р+ (х) and 'Р-(х)  
as factors through the comЬined foпn (f) ( х) = (f) + ( х) + 'Р- ( х) , it follows that

iJX/iJ'P- (х) = iJX/iJrp(x), iJY/iJ'P + (х) =iJY/iJ(f)(x). (А·8) 

I f  we define further 

{ 
[·.'Р+ (х)' 'Р+ (х') ] _  

д2(хх') = 
- [ r p _ ( x ) ,  'Р-(х ' ) ]_

then from (А·3)-(А·8) we obtain

(А·8) 
t<t', 

X(f)(x) Y = N [  {'Р+ (х) +rp_ (x)}  Х У ] +  Jdx'[ .11 (хх') - L 12 (xx') ] д ( Х У )  /д(J)(х').

( A · l O )  

l n  view o f  the first assumption ( А ·  1) and а property of  N-product

( А ·  10) tells us that 

where 

(f)(x) =(f) (x)  + Jdx' {.11 (xx') - .1i xx') } 8/д(J)(х').

W i t h  the help o f  ( А · 5 )  and ( А · 9 )  it is easy to show that 

д1 (хх') - . 1 2 (хх') ={ [(f)+ (х) ,  ( f ) (x ' ) ] - - [ f fJ + (х) ,  ffJ+ ( х ' ) ] - = [ ' Р +  (х) ,  'Р- (х ' ) ]_

[(J)_(x), (J)_(x ' ) ]_- [q,_(x) ,  ( f ) (x ' ) ] - - [ f fJ+ (x') , (J)_(x)]_ 

= D ( x - x ) ,  

t> t'

t<t '  

which is identical with the definition o f  D ( х - х') given Ьу ( 3 • 8 ) .  Thus our proof is 
completed. The proof o f  lemma I I  c n Ье achieved in quite а similar manner, so that i t
will Ье unnecessary to repeat here the similar procedure. 

Appendix В 

First we shall derive the foпnula ( 4 · 5 ) .  For simplicity, we employ hereafter such 
an unit as to make s= 1 and "б= 1. Fourier component of  D ( x )  is then expressed as 

(В ·  1) 

Now the Fourier transfoпn o f  ( 4 · 4 )  is given Ьу 

D * ( k ,  t - t ' )  = D ( k ,  t - t ' ) - 2 g 1f :D (k , t - t 1) D (k , t1 - t') dt1 
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+ (2g 1) 2J : J > ( k ,  t - t 1)D(k, t1 - t2)D(k, t2 - t') dtidt2 " · 

Although D *  (k, t) can Ье evaluated Ьу solving an integral equation 

D * ( k ,  t) = D (k , t ) - 2 g ' f : D ( k ,  t - s ) D * ( k ,  s)ds, 
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( В · 2 )  

( В · 3 )  

we shall follow а more direct and elementary method. А short calculation yields that 

which is reduced in the limit of k - + k '  to 

where 

.d1c= (1-½kd/dk) .  

Using (В• 5) in а repeated manner; we can put (В• 2) into the form 

D *  (k, t) = ( 1 - 2 g '  .d1c + (2g' .J¾_ - · · · ) D ( k ,  t) 

or 

1 - D(k, t), 
1 + 2 g 1.J.., 

( В · 4 )  

( В · б )  

(В•7) 

It is easy to solve this inhomogeneous linear differential equation of  first order with а con-
dition lim D *  ( k,  t) =О.  The result is 

k  m 

where 

D * ( k ,  t) = 1/ g'[ kн D (k ' , t)k'-"dk' 

= 1 / g ' f : f - " D ( f k ,  t)d  

а =  ( 1 + з g ' ) / g ' .  

( В · 8 )  

Thus ( 4 · 5 )  is proved. For the Fourier component of S(x),  the following equations are 
easily proved : 

( В · 9 )  

1:S(k, t - t 1) S (l , t1 - t) S (m , t1 - t') S (n , t ' - t 1) dt1 

= ( f m, - {,.) / (8i + 8m, - 8k - 8п ) S (k , t-t')S(l, t1 - t ) (В·  10) 
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- ( f k - fi ,) /  ( e i + e m - ek - Eп) S(m, t - t ' ) S ( n ,  t ' - t ) .

In particular, in the limit of k-►k1, t t' (В·9) becomes 

r
J
S (k, t - t i ) S(k, t1 - t) dt1 =  - S ( k ,  о) = - µ f k (1 =F [k)-Jo д8k 

(В• 11) 

(В• 9 ) ,  (В• 10) and (В• 11) were used in evaluating the integrals C2A.- C2lii in § 6. 
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