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Introduction

Solidification of an undercooled liquid

Nucleation

Subject of the ;

~4

- A— Wb

Molecular dynamics simulation: By courtesy of R. S-Aga & J. R. Morris

Embryos of the new phase appear
via thermal fluctuation

1 present workshop -

Benchmark #3
at PFHub

T

Complex patterns evolve due to the
interplay of capillarity, diffusion,
and anisotropy.



Types of nucleation to model by phase-field

1. Homogeneous nucleation

- Inside the volume, without the aid of foreign particles

- Extremely rare in nature
Fluctuations required

2. Heterogeneous nucleation

» On surfaces and foreign particles

* Practically much more relevant

3. Athermal nucleation (Greer et al.)

. . Fluctuations not required
- Dormant particles, free growth condition: Af > Afit(R)




Homogeneous nucleation

Classical nucleation theory (CNT): 4x 1078 =
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Heterogeneous nucleation

Classical nucleation theory (CNT):

Assumptions:
e sharp interface
e isotropic, curvature independent surface
energy — spherical shape
* bulk properties inside
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Nucleation rate and limits of the CNT

Nucleation rate:

ES

J = Jyexp <ﬁ> extremely sensitive to W*and T'!

Limits of the classical theory:

* Nucleation rates corresponding to time scales of typical experiments may
correspond to 10-100 molecules — the CNT fails miserably — a diffuse interface

model is needed!
* The nucleus is not necessarily spherical

Gasser et al, Science, 2001



Athermal nucleation

Inoculant particles with good wetting
properties, easy heterogeneous
nucleation

l

particle grows as far as the substrate
size allows, when growth must stop

l

further growth is possible if the radius
can be decreased, i.e., the
undercooling can be increased

l

critical radius (undercooling)?

N >
'N

Quested and Greer, Acta Mat. 2005

Think of pushing a ball through a
hole of radius ry in the wall...

rt=ry

r* — AT
AT = AT* (TN>



Types of nucleation to model by phase-field

1. Homogeneous nucleation

- Inside the volume, without the aid of foreign particles

- Extremely rare in nature

2. Heterogeneous nucleation
» On surfaces and foreign particles

* Practically much more relevant

3. Athermal nucleation (Greer et al.)

- Dormant particles, free growth condition: Af > Afit(R)

Fluctuations required

Fluctuations not required

With the PF theory, we do not have the strongly limiting assumptions of the CNT

Hope for being a better model for nucleation. (see Laszld’s presentation)



Two levels of benchmarking

1. Theoretical / model level

- How do different implementations of the same model compare?
- How do the results depend on e.g. the numerical resolution?

- How do different models compare?

2. Experimental level

- How do the different models compare to experiments?

- Model parameters?



How can we model nucleation in the PF theory?

1. Nucleation seen on large scales (“distant” view)

New particles appearing at random places and times (and
grow further)

!
Put solid seeds at random places and times and let them go

Random numbers are needed to generate the nucleation
times and coordinates

2. Nucleation seen on small scales (“close” view)

Due to the continuous fluctuations in the liquid, solid-like
“blobs” appear and disappear. Only the blobs that happen to
get big enough can go further.

]
Add fluctuations to the system and wait

Random numbers are needed to generate the fluctuations



The 2D *“‘toy model” used for illustrations

Simple phase-field model for a pure substance
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Thoughts on Random Number Generators (RNGs)

» Use good quality RNG

- “If all scientific papers whose results are in doubt because of bad rand()s were to disappear from library
shelves, there would be a gap on each shelf about as big as your fist.” (Numerical Recipes)

- With factory RNGs, hopefully not an issue any more

* True RNG vs. pseudo RNG

« HW vs. SW random generators
- PRNGs require a seed — reproducibility — can be a big advantage in setting up
benchmark problems

* In some cases, reproducibility raises more complicated requirements than
simply using the same seed (see later)

» Cross-platform pseudo RNG where the same sequence of

random numbers is guaranteed?
- Is using the same library (e.g. GSL) enough?



Nucleation in large-scale PF simulations (by hand)

Proposal for the simplest benchmark problem:
iIsothermal, homogeneous nucleation

Input parameter: nucleation rate, J [J] = :
volume x time

Generate random coordinates and times for nucleation
events, then insert small supercritical seeds respectively

Number of nucleation events N (successful + unsuccessful) in a simulation of volume V
and length 1.

k
< N> =JVt, Poisson distributionwithi=<N>, PWN=k) = e‘ﬂF

- Simulations with the same RNG seed:
Not too interesting, not really a nucleation, rather a growth benchmark.

Works with small samples

- Simulations with different RNG seeds:
Just statistical similarity, large enough samples required



Comparison to the JMAK theory

Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory:

Assumptions: X(1) = 1 —exp(=K1") exact!!!

- homogeneous nucleation

» constant growth rate

 convex particles with the same orientation
* infinite system (both in space and time)

constant nucleationrate: n=d+1
initial nucleionly: n=4d

Avrami plot: straight line with slope n

10 simulations with different RNG seeds:

Solid fraction , Avrami plot
: = 10 3 ; ; —_— .

log(-log(1-X))

t log(t)



Problem when the growing particles are really small

Results can be very sensitive to the small differences in the initial conditions. It may have
physical reasons (e.g. MS instability), but it can be triggered by non-physical effects, e.g.

grid anisotropy

Additionally, PF models assume R > 6 > Ax, which is clearly not the case here

lllustration: PF Benchmark Problem #3 with slightly modified initial conditions:




Possible variants

1. Nucleation events only at t=0 (n=d+1 — n=d in the Avrami exponent)

2. Non-constant nucleation rate

1. Temperature gradient

2. Cooling
3. Heterogeneous nucleation

1. Nucleation events only on the surfaces
4. Athermal nucleation by Greer

1. Virtual inoculant particles at random places, free growth starts if driving force
IS supercritical



Nucleation in small-scale PF simulations (by noise)

With the noise term added, the equation of motion becomes a stochastic PDE, the
amplitude of the Gaussian noise is determined by the fluctuation-dissipation theorem

Hohenberg-Halperin classification:
(P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena. Reviews of Modern Physics, 49, 435—479, 1977)

Model A (Non-conserved field):

% = - M5—F+§(F, ) with <éFrn> =0
o o < EFNEF,T) > = 2MKT&(F — 7)5(t — )

Model C (Non-conserved field coupled to a conserved field):

a¢ _ o - . = = 4 — P —
o =~ Mig+en with < &F, DEF, 1) > = 2M KT 5(F — #)3(t — 1)

ac oF — _ , N N S
oY [McV5—+ ¢ (7, f>] with < {, (7, 0¢,(7, 1) > = 2MKT§,, ,6(F — 7)5(t — 1)
C



Nucleation in small-scale PF simulations (by noise)

Discretization:
<EMEF) > =2MkTS(r — r¥)o(t —t') =

2MkT where d is the number of

Oy 1 Or ¢ . .
AxdAp M spatial dimensions

Complete equation of motion with finite difference and forward Euler:

¢t 1 + ¢t_1 — 2¢t MkT < 5 > =)

+1 t 2 Tx+ X X PN 1¢ 1

=¢'+AtM| € — + + At

b = < Ax2 81:) +pd) Al < 2> =1
deterministic part stochastic part

Mind the dimensionality!!!

In 2D or 1D simulation we still use 3D materials parameters =& some thickness is

always implicitly assumed.
This is not a problem in the deterministic part, but results in a different scaling of the

stochastic part!



Nucleation in small-scale PF simulations (by noise)

- What do we have to do? Add fluctuations (noise) and wait

o¢ oF
R M £+§ where £ and ¢ are gaussian random variables with
o 5 zero mean that put the “right amount” of fluctuations
— =V|MV—+¢ into the system
dc oc
g(¢)
* Problems / issues in actual simulations:
- What if the amplitude of noise is not small on the
[0 1] scale?
- Conserved fields: local and global conservation ol
- If there are log(c) terms in F then 0 < ¢ must be 0 1'
strictly satisfied! What if the flux noise wants to p(¢)

make c negative?




Slow and fast nucleation for benchmarking

Slow nucleation, only a few isolated Fast nucleation, seems to happen
nuclei, large samples needed for everywhere, even smaller samples
statistics can provide enough statistics

noise amplitude x1.5

Solid fraction

: —————— 1
0.8 | 0.8 +
0.6 0.6 +
X
04 r 04 r
0.2 r 02 |
0 0

0 50 100 150 0 5 10 15 20



Reproducibility of the results with noise

Statistical similarity

different random number
sequences

different grids
or
different random number seeds

> O

Can we do something in
between?

Perfect reproducibility

the same random number
sequence everywhere

identical grids
and
identical random number seeds

Generate noise patterns that are similar across different grids or meshes

Similar noise patterns — nucleation is expected to happen at the same places



Quick reminder on Gaussian random variables

Normal distribution

Probability density function:

1 — u)? 4|
Jx) = exp JE :
1/271'02 202 02|

Mean or expected value: u X Wikipedia
Standard deviation: ¢
Variance: o2

The sum of i=1...N independent Gaussian random variables are also Gaussian
random variables with

N

N
w= )y 0*=) 0}
i=1

i=1



Generating Ax and At independent noise patterns

2D rectangular grid: ¢i: regular variables, &;: stochastic variables, <&>=0, <&2> =02
$1+81 Pt averaging
> $+&
P3+E3  Patia 1 <
h+E=2 ) (hi+E)
Ax/2  Ax/2 =1 Ax

N Q. l <
mean value: ¢ + & = Z¢i+5i= Z

L 1
Coarsening in 2D: Ax/2 - Ax = standard deviation: ¢ — >0

This is in agreement with the scaling required by the fluctuation-dissipation theorem!

1 [ 1
0 X \/(Ax/2)2 VS. 0 X —sz




Generating Ax and At independent noise patterns

This averaging works not only in 2D, and it works with Az, too

The proposed technique for generating random numbers that provide similar noise
patterns independent of 4r and Ax:

e For reproducibility, fix the RNG seed

e Generate the random numbers for the finest temporal and spatial
resolutions

e Obtain the random numbers for the coarser simulations by averaging
the random numbers for the finer simulations. They will automatically
have the required scaling properties

At/2
At
At/2
| &

Ss g6 averaging

Eq > £
& & E= )¢
Ax/2 Ax/2 Ax




Solid seed growing without noise, convergence

Growth of a spherical seed:

ec=W=M=1
—_ k —
Af = 0.3, 1y = 0.79
1t | | ' 1 | | '
At
0.8 Aty/2 0.8 |
At /4
C C
S 06 Aty/8 S 0.6
& At /16 &
2 04t 2 04t
®) ®)
7p) wn
0.2 0.2
0 0 &
0 20 40 60 80 0 20 40 60 80
time time

Results are well converged!



Nucleation with noise, convergence with Af¢

Snapshots from the same simulation time

1t
Ato
08 | At /2
€2:W:M:1 At0/4
Af=0.3 _g; 06 At,/8
Axy = 0.4, Aty = 0.01 g Ato/16
<> 0.015 S 04
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0 AX(%AZLO 0.2
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time



Nucleation with noise, convergence with Ax

1t
Axo
08 | Ax /2
€2:W:M:1 AX0/4
Af=0.3 S o6 |
Ax, = 0.4, Aty = 0.01 e
2 04 f
<> = 0.015 S
AngtO 0.2
O 1
0 5 10 15 20

time



Why no convergence with Ax?

Increasing the spatial resolution when using white noise = new, higher frequencies
are added to the system — the energy of the system is changed (increased) —
nucleation is highly affected

L,N, Ax, L,2N, Ax,y/2

In fact, for ¢ > 2 the total energy diverges as Ax — 0: ultraviolet divergence

Solution: use a filtered noise with cutoff 1. > 2Ax, before refining the grid

Justification:

e “Top down” approach: it is just a necessity to have converged solutions, or even
just to avoid the ultraviolet divergence

e “Bottom up” approach: coarse graining with length 4 — fluctuations below 4 are
already included in the system — they should not be added again.
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Similar noise patterns in different methods?

Rectangular grid Triangular mesh

For the correct scaling and similarity, the values corresponding to the centers of the
large cells (blue mesh) should be the average of the values corresponding to the
underlying noise pattern (gray pixels)

 For rectangular grids: simple mean of the contributing pixel values
« For non-rectangular grids: weighted mean of the contributing pixel values

- Each pixel must be shared between the larger cells overlapping it according to
their overlap area

- Simplification that may work for fine if the cells are large compared to the noise
pixels: each noise pixel is assigned to the cell that contains its center

- Simple interpolation is not good



How to use filtered noise with non-regular mesh?

FFT




Other 1ssue: the renormalization of F by the noise

Adding noise renormalizes the phase-field equations.

Consider the double well potential around the minima at ¢=0,1 — add fluctuations —
asymmetric restoring forces — the mean value vill be shifted from ¢=0,1.

lllustration: Solution:
my earlier transformation curves Renormalization of the potential

\ | : | : | : | :
_\ B Simulation /f
\ — Theory /

1 L

O
o

0.0004 - \ /]

o
fo)

solid fraction
o
AN

0.0002 |- \ / -
? o
\ /
0 . | . }\I MI/./. | .
20 0.95 0.96 0.97 0.98 0.99 1

time ¢
M. Plapp: Philosophical Magazine, 91,25-44 (2011)

The renormalization is not significant for simulations with large cells (small noise),
e.g. in MS instability, dendritic sidebranching, but causes problems with small cells

(large noise), e.g. in nucleation:

« The properties of our model are not what we think
« No 1 to 1 correspondence between the two nucleation methods (noise & EL)



Benchmark problems for nucleation by noise

1. Check the model when filtered noise is added (small noise limit)
1. Obtain the mean value and the standard deviation of ¢ (space and time)
2. Calculate the free energy of the system, F[¢], and its standard deviation (time)
The results should not depend on the mesh

2. Nucletion by noise (increase the noise amplitude)
1. Calculate the solid fraction, determine the Avrami exponent
2. Number of particles vs. time? (not easy) — nucleation rate



Possible variants

1. Nucleation-events only at r=0 (n=d+1=-n=d in the Avrami

exponenry

2. Non-constant nucleation rate
1. Temperature gradient
2. Cooling

3. Heterogeneous nucleation

1. Nucleatiomevents-only-entite surfaces

2.VBoundary conditions? Suggestion: Model A and B, see
later

4. Athermal nucleation by Greer
1. VirtuaHneculant particles at random plaees; free growth

starts_if driwi € IS supercritical _

2. True inoculant particles at random places, nucleation
and the formation of dormant embryos happens
automatically. Free growth should also be automatic if Af

> Afwit(R). Check?

“ - T_

| |

hLl, . o 1i

s

57——.‘* ‘:;.Il
AT = 17K

;;7__ T::__ :



Nucleation by solving the Euler-Lagrange equations

2 . !
_ |1 2 Simple binary PF model
Flg.cl = I 2 (VoY +weld) + /(¢ c)) dV with no (V¢)* term

The Euler-Lagrange equations:
6F  of

— =—— -’V =0 nonlinear elliptic PDE
op o

oF of .
—=VM.V—=0 - — = u(¢,c) =const = u, scalar equation

oc oc oc

If u(¢h, c) is a simple function, then c(¢) can be obtained and plugged back into the first ELE

The binary problem is reduced to the single phase-field problem

\

Further simplification: the spatial dimensions of the problem can be reduced if
spherical or cylindrical symmetry can be assumed

\

Solution methods: relaxation methods, shooting methods, etc.
P(7) = c(p(7)) = W* = F[p(7), c(¢(7))]

This is also a candidate for a benchmark poroblem: determine ¢(r) and W*



Phase field modeling of surfaces

surface = boundary of the simulation domain — surface properties = boundary conditions

Free energy functional including the Z(¢) surface function:

(Cahn JCP 1977) 5

Flo).c(r)) = [ | (6.0 + 5 (Vo7| av + [2(0)as

At the extremum by ¢(r) and c(r), the variation of F should disappear for any
infinitesimally p(r) and y(r) compatible with the boundary conditions:

0F = Flo(r) + p(r), c(r) + x(r)] — Flo(r), c(r)] = 0

Cases:
This leads to the Euler-Lagrange equations e ¢(r) is fixed along the boundary:
of (o, c) 2724 — p(r)=0 on the surface, so the
€ _
200 , 1 the volume surface EL eq. holds
f(&,¢) = 1 e ¢(r)is not fixed along the
Oc
boundary:
7'(¢) — Vé-n] =0  on the surface the first part of the surface EL

eq. gives the b.c. to use

J.A. Warren et al. Phase field approach to heterogeneous crystal nucleation in alloys. Physical Review B, 79, 014204 (2009)



Model A

(not according to the Hohenberg-Halperin classification!!!)

Goal: direct realization of the y contact angle isosurfaces of ¢
(L. Granasy)
Vo
2w
Vo n= /= 6(1— ¢)cos()

surface W

We need Z(¢) to calculate the free energy of the system

7Z'(¢) = =€’V -n = —6y51,0(1 — @) cos(v))
Z(9) = —vs1(3¢° — 2¢°) cos(¢)



Ni:
¢ d10-90% =2 nm
ey =364 md/m2
« Ax =2A (1 pixel ~ 1 atom)
o fluctuation-dissipation noise
 thermal feedback

b = 60° i = 90° =120

LaszIo Granasy



Model A

Solving the PDEs in cylindrical coordinate system (Matlab PDE toolbox)

v = 30° Y = 45° v = 60°

The work of formation compared to the
classical theory

1

0.8

—
SN N N ; 06
v = 90° v =120° vy =170° = 04

0.2




Model B

Constant ¢p=¢o at the interface (Dirichlet b.c.)
(J. Warren)

Obtaining the y contact angle via Young’s law:

®0
et = V20 /O D1 — )% = 1 (302 — 242)

1
Yws = V262w [ ¢*(1—¢)* = a(1 — 3¢5 + 2¢;)
Bo

cos(1)) = ”“’l;l”“’s = 203(3 — 2¢p) — 1

Setting ¢p=¢o at the interface: wetting layer

There exist a critical value of ¢, below which the
interface can grow freely

180

185f ) " SEEER e

451 R RN N T

0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1



Model B

Solving the PDEs in cylindrical coordinate system

0= 0.7 0= 0.6

The work of formation compared to the
classical theory

1

0.8

Z 0.6

0.2




Comparison of Models A, B and C

All 3 models are in agreement with the classical nucleation theory the in the R — oo limit



Summary

Benchmark problems proposed:
Simulating the time evolution of the process

1. Insert nuclei at random places at random times (large scale view)

1. Homogeneous / heterogeneous
2. Add fluctuations and wait (small scale view)

1. Homogeneous / heterogeneous (with appropriate boundary conditions)
3. Athermal nucleation by Greer

1. Use the model to justify a non-stochastic “nucleation”

2. Simulate the whole process (heterogeneous nucleation + growth barrier)

Determining the equilibrium configuration of the nucleus

1. Solve the respective Euler-Lagrange equations to obtain the saddle point solutions

1. Homogeneous / heterogeneous / athermal nucleation



