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Introduction
Solidification of an undercooled liquid

GrowthNucleation

200,000 time steps 220,000 time steps 

160,000 time steps 180,000 time steps 

Molecular dynamics simulation: By courtesy of R. S-Aga & J. R. Morris

Embryos of the new phase appear 
via thermal fluctuation

Complex patterns evolve due to the 
interplay of capillarity, diffusion, 

and anisotropy.

Benchmark #3  
at PFHub

Subject of the  
present workshop 



Types of nucleation to model by phase-field

1. Homogeneous nucleation
• Inside the volume, without the aid of foreign particles
• Extremely rare in nature  

2. Heterogeneous nucleation
• On surfaces and foreign particles
• Practically much more relevant 

3. Athermal nucleation (Greer et al.)
• Dormant particles, free growth condition: 𝛥f > 𝛥fcrit(R)

Fluctuations required

Fluctuations not required



Homogeneous nucleation
Classical nucleation theory (CNT): 

Assumptions:
• sharp interface
• isotropic, curvature independent surface 

energy → spherical shape
• bulk properties inside
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Fig. 7.1 Surface, bulk and total free energies of a spherical solid as functions of its
radius for a fixed undercooling �T = 5K. Property data for Al are tabulated in
Table 7.1.

this occurs is determined by differentiating Eq. (7.2) with respect to R and
setting the result equal to zero:
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where �s` = �s`/(⇢s�sf ) is the Gibbs-Thomson coefficient. Substituting
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An embryo of radius Rc is called a critical nucleus, since it is energetically
favorable for nuclei with R < Rc to melt, and for R > Rc to grow. Note that
for �T < 0, corresponding to temperatures above Tf , both terms on the
right hand side are positive for all values of R, and any embryo of the solid
that forms should always remelt. Let us note that the exact geometry of
the embryo is not important – it changes the prefactor in Eq. (7.4), but not
in such a way as to affect the conclusions.

We have actually already encountered this result twice in earlier chap-
ters. First, in Chap. 2, we found the relationship between the under-
cooling and curvature at equilibrium, and Eq. (7.3) simply corresponds
to Eq. (2.61) with the mean curvature ̄ = R

�1
c

. We also found this re-
sult in Sect. 5.4.1, where an analysis of the growth rate of a spherical
solid in an undercooled melt revealed that the sphere had a critical radius
of Rc = 2�s`/�T . (See Eq. (5.184) and the subsequent discussion.) The
important point is that all of these analyses are tied together: the con-
tribution of curvature to thermodynamic equilibrium leads to a condition

Free energy of a spherical solid particle 
of radius r: M. Rappaz: Solidification

2D3D



Heterogeneous nucleation
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Classical nucleation theory (CNT): 
Assumptions:

• sharp interface
• isotropic, curvature independent surface 

energy → spherical shape
• bulk properties inside



Nucleation rate and limits of the CNT

Nucleation rate:

• Nucleation rates corresponding to time scales of typical experiments may 
correspond to 10-100 molecules → the CNT fails miserably → a diffuse interface 
model is needed!

• The nucleus is not necessarily spherical

extremely sensitive to W* and T !

Limits of the classical theory:

their neighbors have similar bond-order pa-
rameters and are therefore said to be joined
by a crystal-like “bond” (26 ). Even in the
disordered liquid, crystal-like bonds are not
uncommon; thus, only particles with eight
or more crystal-like bonds are defined as
being crystal-like. All particles in a crys-
tallite with perfect fcc, hcp, rhcp, or bcc
structure are correctly recognized, whereas
only an insignificant number of particles in
the liquid are found to be crystal-like.

At the beginning of an experiment, sam-
ples started in the metastable liquid state,
but because of random structural fluctua-
tions, subcritical nuclei of crystal-like par-

ticles were present. This is shown in two
early-time snapshots (Fig. 1, A and B),
where we represent crystal-like particles as
red spheres and liquid-like particles as blue
spheres, shown with a reduced diameter to
improve visibility. Typically, these sub-
critical nuclei contained no more than 20
particles and shrank to reduce their surface
energy. After a strongly !-dependent peri-
od of time, critical nuclei formed and rap-
idly grew into large postcritical crystallites
(Fig. 1, C and D). By following the time
evolution of many crystallites, we deter-
mined the size dependence of the probabil-
ities pg and ps with which crystallites grow

or shrink (27 ). Because pg " ps at the
critical size, we plot the difference pg – ps

as a function of crystallite radius and par-
ticle number M in Fig. 2 for a sample with
! " 0.47. We found an abrupt change from
negative to positive values of pg – ps (28),
allowing us to identify the critical size,
which is 60 # M # 160, in good agreement
with recent computer simulations (9). This
corresponds to rc $ 6.2a, assuming a spher-
ical nucleus. The volume fraction of the
nuclei is larger than the ! value of the
fluid; above coexistence, the difference is
%! " 0.012 & 0.003, independent of !,
where %! increases slightly for M ' 100.
We can understand this %! value as result-
ing from the higher osmotic pressure exert-
ed by the fluid on the nuclei (16 ), whereas
in the coexistence regime, %! must reflect
the evolution of ! to the higher value,
ultimately attained by the crystallites,
where %! " !m ( !f . The nucleation rate
densities were slower than 5 mm(3 s(1 for
! # 0.45, as well as for ! ' 0.53. Values
of the order of 10 mm(3 s(1 were found for
0.45 # ! # 0.53. However, for 0.47 # ! #
0.53, the average size of the nuclei began to
grow immediately after shear melting; thus,
there was little time for the sample to equil-
ibrate after shear melting, and we were not
able to observe the formation process of
critical nuclei entirely. Our nucleation rate
densities are of the same magnitude as
values obtained by small-angle light scat-
tering from hard spheres (29, 30) but are
two orders of magnitude larger than those
obtained from Bragg scattering (31).

The direct imaging afforded by confocal
microscopy enabled us to determine the
structure and shape of individual nuclei. In
Fig. 3, A through C, we show a crystallite
that is slightly larger than the critical size.
Again, the red spheres represent crystal-
like particles, and the blue ones depict par-
ticles in the liquid state that are on the

Fig. 3. A snapshot of a
crystallite of postcritical
size in a sample with ! "
0.47 is shown from three
different directions (A
through C). The 206 red
spheres represent crystal-
like particles and are
drawn to scale; the 243
extra blue particles share
at least one crystal-like
“bond” to a red particle
but are not identified as
crystal-like and are re-
duced in size for clarity.
(D) A cut with a thickness
of three particle layers
through the crystallite, il-
lustrating the hexagonal
structure of the layers.
Blue, red, and green
spheres represent parti-
cles in the different layers
(front to rear). This cut
was taken from the re-
gion that is indicated by
the green boxes in (A) and
(B). The particle diameter in (D) is reduced in order to improve the visibility of the second and third
layers.

Fig. 4. (A) q4, q6, and
w6 bond-order parame-
ter histograms for fcc
(blue curves), hcp (red
curves), bcc (black
curves), and liquid
(purple curves). (B) The
measured bond-order
histograms (black plots)
of a sample with ! "
0.45 are shown togeth-
er with a least squares
fit (blue curve) using
the bond-order histo-
grams from (A). The re-
sults of this and other
structure fits are sum-
marized in Table 1. Fig. 5. The number of nuclei N(A) (circles) is

shown as a function of the nucleus surface area
A approximated by an ellipsoid (! " 0.445).
From the fit (line) with the function N(A) "
constant!exp[–A)/(kBT )], the surface tension
) " 0.026kBT/a

2 is determined. The values of )
for all samples are given in the inset as a
function of !.
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uncommon; thus, only particles with eight
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being crystal-like. All particles in a crys-
tallite with perfect fcc, hcp, rhcp, or bcc
structure are correctly recognized, whereas
only an insignificant number of particles in
the liquid are found to be crystal-like.

At the beginning of an experiment, sam-
ples started in the metastable liquid state,
but because of random structural fluctua-
tions, subcritical nuclei of crystal-like par-
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where we represent crystal-like particles as
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(Fig. 1, C and D). By following the time
evolution of many crystallites, we deter-
mined the size dependence of the probabil-
ities pg and ps with which crystallites grow

or shrink (27 ). Because pg " ps at the
critical size, we plot the difference pg – ps

as a function of crystallite radius and par-
ticle number M in Fig. 2 for a sample with
! " 0.47. We found an abrupt change from
negative to positive values of pg – ps (28),
allowing us to identify the critical size,
which is 60 # M # 160, in good agreement
with recent computer simulations (9). This
corresponds to rc $ 6.2a, assuming a spher-
ical nucleus. The volume fraction of the
nuclei is larger than the ! value of the
fluid; above coexistence, the difference is
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densities are of the same magnitude as
values obtained by small-angle light scat-
tering from hard spheres (29, 30) but are
two orders of magnitude larger than those
obtained from Bragg scattering (31).

The direct imaging afforded by confocal
microscopy enabled us to determine the
structure and shape of individual nuclei. In
Fig. 3, A through C, we show a crystallite
that is slightly larger than the critical size.
Again, the red spheres represent crystal-
like particles, and the blue ones depict par-
ticles in the liquid state that are on the
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0.47 is shown from three
different directions (A
through C). The 206 red
spheres represent crystal-
like particles and are
drawn to scale; the 243
extra blue particles share
at least one crystal-like
“bond” to a red particle
but are not identified as
crystal-like and are re-
duced in size for clarity.
(D) A cut with a thickness
of three particle layers
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lustrating the hexagonal
structure of the layers.
Blue, red, and green
spheres represent parti-
cles in the different layers
(front to rear). This cut
was taken from the re-
gion that is indicated by
the green boxes in (A) and
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sults of this and other
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From the fit (line) with the function N(A) "
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Gasser et al, Science, 2001

J = J0 exp ( W*
kT )



Athermal nucleation

homogeneous nucleation is significant only for the com-
bination of extremely high cooling rate and large
undercooling.

In solidification, the nucleation of the crystalline
phase is, however, almost always heterogeneous. In this
case, an athermal contribution to the nucleation rate can
be significant over a wide range of conditions. For
example, in the freezing of a cast iron, Oldfield [9]found
that the number of grains per unit volume n was inde-
pendent of holding time at a given undercooling, but
proportional to the square of the undercooling DT. An
athermal nucleation law of this type is easy to imple-
ment in numerical modelling of solidification and is
widely used. As proposed by Thévoz et al. [10], the
nucleation rate dn/dDT as a function of DT is commonly
taken to have a Gaussian form; this has been used in
probabilistic modelling of realistic grain structures [11].
The form of dn/dDT is not intrinsic to the liquid, but
dependent on thermal history. In particular, as reviewed
by Turnbull [12], the extent to which a melt can be
undercooled may increase strongly with the degree to
which it was superheated above its liquidus temperature
TL. This can be explained as an effect of the survival of
embryos of the crystalline phase above TL in cavities
(conical or cylindrical, in a mould wall or other sub-
strate) [12]. If the superheat is greater, fewer embryos
survive and the survivors are in cavities with a smaller
mouth; the DT at which they become active nuclei on
cooling is inversely proportional to the mouth radius
[12]. (Similar analyses have been applied for the nucle-
ation of gas bubbles in supersaturated liquids. Pre-exist-
ing bubbles in cavities are active nuclei if the cavity
mouth exceeds a critical radius [13].)

Turnbull [14]showed that dispersions of mercury
droplets could be used to measure the rate of homoge-
neous nucleation under isothermal conditions, but he
found that the large DT required was not always obtain-
able. In some dispersions (presumed to be contaminated
with mercury oxide) the droplet undercoolings before
solidification were only 2–4 K [15]. For these disper-
sions, the fraction of droplets solidified was dependent
on DT but not on time. Turnbull attributed this to ather-
mal nucleation at surface patches acting as potent cata-
lysts. He noted that a embryo of the crystalline phase
formed on such a patch could become an active trans-
formation nucleus only when, on cooling, the critical
nucleation radius r! becomes less than the radius of
the patch. On this basis, he was able to derive the size
distribution of patches from the distribution of DT val-
ues at which the droplets solidified.

Similar athermal heterogeneous nucleation occurs in
the solidification of inoculated aluminium alloys [16].
Inoculation with an Al–Ti–B master alloy contributes
particles of TiB2 to the melt, and nucleation on these
is dominant. The particles are hexagonal prisms and
nucleation of solid aluminium is on their flat {0001}

faces [17]. Measured undercoolings are consistent with
grain initiation occurring when r! falls below the radius
rN of the {0001} faces (hexagonal, but approximated as
circles) and a pre-existing thin layer of solid aluminium
on the {0001} faces then grows outwards. This appear-
ance of a transformation nucleus has been termed the
onset of free growth [16]. By measuring the distribution
of rN, it is possible to model the sequence of grain initi-
ation events on cooling and to make quantitatively cor-
rect predictions of final grain size as a function of refiner
addition level, alloy solute content and cooling rate [16].
The success of this free-growth model has prompted
studies of how the particle size distributions in inocu-
lants might be optimized [18].

In this paper we analyse further the heterogeneous
nucleation of solidification on nucleant substrates of a
defined size. The standard approach to finite-size effects,
taken by Fletcher [19–21], considers nucleant particles of
various shapes, but analyses only the rate of thermal
nucleation under isothermal conditions. We extend this
work by analysing athermal nucleation. For simplicity
we consider nucleant areas that are plane circles of ra-
dius rN, the analysis for more complicated shapes mostly
differing only by geometrical factors. Plane circular
areas of nucleant can equally represent the surface
patches considered by Turnbull [15](Fig. 1(a)), or the
active faces of nucleant particles (Fig. 1(b)), for example
the {0001} faces of TiB2 inoculant particles used to

Fig. 1. Examples (shaded in (a) and (b)) of circular nucleant areas of
the kind considered in this work: (a) a surface patch, (b) the active face
of a nucleant particle. The growth of solid from such a nucleant area
(c) involves an increase in the curvature of the liquid/solid interface
enabled by an increase in undercooling. The curvature is maximum
when the liquid/solid interface is hemispherical and there is free growth
beyond that point. The onset of free growth as the undercooling is
increased constitutes athermal heterogeneous nucleation of
solidification.

2684 T.E. Quested, A.L. Greer / Acta Materialia 53 (2005) 2683–2692

Inoculant particles with good wetting 
properties, easy heterogeneous 

nucleation

particle grows as far as the substrate 
size allows, when growth must stop

further growth is possible if the radius 
can be decreased, i.e., the 

undercooling can be increased

critical radius (undercooling)?

Think of pushing a ball through a 
hole of radius rN in the wall...

r⇤ = rN

r⇤ ! �T ⇤

�T ⇤ = �T ⇤(rN )

Quested and Greer, Acta Mat. 2005



Types of nucleation to model by phase-field

With the PF theory, we do not have the strongly limiting assumptions of the CNT

Hope for being a better model for nucleation. (see László’s presentation)

1. Homogeneous nucleation
• Inside the volume, without the aid of foreign particles
• Extremely rare in nature  

2. Heterogeneous nucleation
• On surfaces and foreign particles
• Practically much more relevant 

3. Athermal nucleation (Greer et al.)
• Dormant particles, free growth condition: 𝛥f > 𝛥fcrit(R)

Fluctuations required

Fluctuations not required



Two levels of benchmarking

1. Theoretical / model level
• How do different implementations of the same model compare?
• How do the results depend on e.g. the numerical resolution?
• How do different models compare?  

2. Experimental level
• How do the different models compare to experiments?
• Model parameters?  



How can we model nucleation in the PF theory?

1. Nucleation seen on large scales (“distant” view)
New particles appearing at random places and times (and 
grow further)

↓
Put solid seeds at random places and times and let them go

Random numbers are needed to generate the nucleation 
times and coordinates

2. Nucleation seen on small scales (“close” view) 
Due to the continuous fluctuations in the liquid, solid-like 
“blobs” appear and disappear. Only the blobs that happen to 
get big enough can go further.

↓
Add fluctuations to the system and wait

Random numbers are needed to generate the fluctuations



The 2D “toy model” used for illustrations

F[ϕ] = ∫ [ ϵ2

2
(∇ϕ)2 + wg(ϕ) − Δf(T ) p(ϕ)] dV

g(ϕ) = ϕ2(1 − ϕ)2

p(ϕ) = ϕ3(10 − 15ϕ + 6ϕ2)

Simple phase-field model for a pure substance

Equilibrium solid-liquid interface:

ϕ(x) =
1 − tanh ( x

2δ )
2

δ =
ϵ2

w
, γ =

ϵ2w

3 2

Nucleation and growth in 2D: 

T = Tm, Δf = 0

T < Tm, Δf > 0

r*2D =
γ

Δf
=

ϵ2w

3 2Δf

·ϕ = − M
δF
δϕ

= M (ϵ2 ∇2ϕ − wg′�(ϕ) + Δf p′�(ϕ)) +
MkT

Δx2Δt
ξ

ϕ′�(x) =
2w
ϵ2

ϕ(1 − ϕ)



Thoughts on Random Number Generators (RNGs) 

• Use good quality RNG
• “If all scientific papers whose results are in doubt because of bad rand()s were to disappear from library 

shelves, there would be a gap on each shelf about as big as your fist.” (Numerical Recipes)

• With factory RNGs, hopefully not an issue any more

• True RNG vs. pseudo RNG
• HW vs. SW random generators
• PRNGs require a seed → reproducibility → can be a big advantage in setting up 

benchmark problems
• In some cases, reproducibility raises more complicated requirements than 

simply using the same seed (see later) 

• Cross-platform pseudo RNG where the same sequence of 
random numbers is guaranteed?

• Is using the same library (e.g. GSL) enough?



Nucleation in large-scale PF simulations (by hand)

Proposal for the simplest benchmark problem:
isothermal, homogeneous nucleation

• Simulations with the same RNG seed: 
Not too interesting, not really a nucleation, rather a growth benchmark. 
Works with small samples

• Simulations with different RNG seeds: 
Just statistical similarity, large enough samples required

Generate random coordinates and times for nucleation 
events, then insert small supercritical seeds respectively

[J] =
1

volume × time

< N > = JVt, Poisson distribution with λ = < N > , P(N = k) = e−λ λk

k!

Number of nucleation events N (successful + unsuccessful) in a simulation of volume V 
and length t:

Input parameter: nucleation rate, J



X(t) = 1 − exp(−Ktn)

Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory:
exact!!!

Comparison to the JMAK theory

Assumptions:
• homogeneous nucleation
• constant growth rate
• convex particles with the same orientation
• infinite system (both in space and time)

Avrami plot: straight line with slope n

constant nucleation rate:
initial nuclei only:

n = d + 1
n = d

0 50 100 150
t

0

0.2

0.4

0.6

0.8

1

X

Solid fraction

10 0 10 1 10 2

log(t)

10 -4

10 -2

10 0

10 2

lo
g(
-lo
g(
1-
X)
)

Avrami plot

10 simulations with different RNG seeds:



Problem when the growing particles are really small

Results can be very sensitive to the small differences in the initial conditions. It may have 
physical reasons (e.g. MS instability), but it can be triggered by non-physical effects, e.g. 
grid anisotropy

Additionally, PF models assume R > 𝛿 > 𝛥x, which is clearly not the case here

Illustration: PF Benchmark Problem #3 with slightly modified initial conditions:

R0 = 8 ± 0.4



Possible variants

1. Nucleation events only at t = 0 (n = d + 1 → n = d in the Avrami exponent)
2. Non-constant nucleation rate

1. Temperature gradient
2. Cooling

3. Heterogeneous nucleation
1. Nucleation events only on the surfaces

4. Athermal nucleation by Greer
1. Virtual inoculant particles at random places, free growth starts if driving force 

is supercritical



Nucleation in small-scale PF simulations (by noise)

∂ϕ
∂t

= − M
δF
δϕ

+ξ( ⃗r, t) with

With the noise term added, the equation of motion becomes a stochastic PDE, the 
amplitude of the Gaussian noise is determined by the fluctuation-dissipation theorem

Hohenberg-Halperin classification: 
(P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena. Reviews of Modern Physics, 49, 435–479, 1977)

Model A (Non-conserved field): 

Model C (Non-conserved field coupled to a conserved field): 

∂ϕ
∂t

= − Mϕ
δF
δϕ

+ξ( ⃗r, t) with < ξ( ⃗r, t)ξ( ⃗r′�, t′�) > = 2MϕkT δ( ⃗r − ⃗r′ �)δ(t − t′ �)

∂c
∂t

= ∇[Mc ∇
δF
δc

+ ⃗ζ ( ⃗r, t)] with < ζm( ⃗r, t)ζn( ⃗r′�, t′�) > = 2MckT δm,nδ( ⃗r − ⃗r′�)δ(t − t′ �)

< ξ( ⃗r, t) > = 0
< ξ( ⃗r, t)ξ( ⃗r′�, t′�) > = 2MkT δ( ⃗r − ⃗r′�)δ(t − t′�)



Nucleation in small-scale PF simulations (by noise)

Discretization:

ϕt+1
x = ϕt

x + Δt M (ϵ2 ϕt
x+1 + ϕt

x−1 − 2ϕt
x

Δx2
− g′�(ϕt

x) + p′�(ϕt
x)) + Δt

MkT
ΔxdΔt

ξ

In 2D or 1D simulation we still use 3D materials parameters →  some thickness is 
always implicitly assumed.
This is not a problem in the deterministic part, but results in a different scaling of the 
stochastic part!

< ξ(r) ξ( ⃗r′�) > = 2MkT δ( ⃗r − ⃗r′�)δ(t − t′�) =
2MkT
ΔxdΔt

δn,n′ �δt,t′ �

Complete equation of motion with finite difference and forward Euler:

Mind the dimensionality!!!

< ξ > = 0
< ξ2 > = 1

deterministic part stochastic part

where d is the number of 
spatial dimensions



Nucleation in small-scale PF simulations (by noise)

• What do we have to do? Add fluctuations (noise) and wait

∂ϕ
∂t

= − M
δF
δϕ

+ξ

∂ϕ
∂c

= ∇[M ∇
δF
δc

+ ⃗ζ ]
where ξ and  ⃗ζ  are gaussian random variables with
zero mean that put the “right amount” of fluctuations
into the system

• Problems / issues in actual simulations:
• What if the amplitude of noise is not small on the 

[0 1] scale?
• Conserved fields: local and global conservation
• If there are log(c) terms in F then 0 < c must be 

strictly satisfied! What if the flux noise wants to 
make c negative?

0 1

0

g( )

0 1

0

1

p( )



Slow and fast nucleation for benchmarking
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Slow nucleation, only a few isolated 
nuclei, large samples needed for 

statistics

Fast nucleation, seems to happen 
everywhere, even smaller samples 

can provide enough statistics

noise amplitude ×1.5



Reproducibility of the results with noise

Perfect reproducibility 
the same random number 

sequence everywhere
identical grids 

and  
identical random number seeds

Statistical similarity
different random number 

sequences 
different grids 

or 
different random number seeds

Generate noise patterns that are similar across different grids or meshes

Similar noise patterns → nucleation is expected to happen at the same places

Can we do something in 
between?



Quick reminder on Gaussian random variables

Normal distribution

- 3 - 2 - 1φ μ
,σ

2
(

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5
x

1.0

−1 0 2 4−2−4

x)

0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

Wikipedia

f(x) =
1

2πσ2
exp (−

(x − μ)2

2σ2 )
Probability density function:

Mean or expected value: 𝜇
Standard deviation: 𝜎 
Variance: 𝜎2

The sum of  i = 1…N  independent Gaussian random variables are also Gaussian 
random variables with

μ =
N

∑
i=1

μi, σ2 =
N

∑
i=1

σ2
i



Generating Δx and Δt independent noise patterns

𝜙1+𝜉1 𝜙2+𝜉2

𝜙3+𝜉3 𝜙4+𝜉4

Δx /2 Δx /2

𝜙 + 𝜉

Δx

2D rectangular grid:

averaging

𝜙i: regular variables, 𝜉i: stochastic variables, < 𝜉i > = 0, < 𝜉i2> = 𝜎2

ϕ + ξ =
1
4

4

∑
i=1

(ϕi + ξi)

mean value: ϕ + ξ =
1
4

4

∑
i=1

ϕi + ξi =
1
4

4

∑
i=1

ϕi = ϕ

variance: (ϕ + ξ − ϕ + ξ)2 = ( 1
4

4

∑
i=1

ξi)
2

=
1
16

4

∑
i=1

ξ2
i =

1
4

σ2

This is in agreement with the scaling required by the fluctuation-dissipation theorem!

Coarsening in 2D: Δx /2 → Δx ⇒ standard deviation: σ →
1
2

σ

σ ∝
1

(Δx /2)2 σ ∝
1

Δx2vs.



𝜉1 𝜉2

𝜉3 𝜉4

Generating Δx and Δt independent noise patterns

The proposed technique for generating random numbers that provide similar noise 
patterns independent of 𝛥t and 𝛥x:

• For reproducibility, fix the RNG seed

• Generate the random numbers for the finest temporal and spatial 
resolutions

• Obtain the random numbers for the coarser simulations by averaging 
the random numbers for the finer simulations. They will automatically 
have the required scaling properties

This averaging works not only in 2D, and it works with Δt, too

𝜉5 𝜉6

𝜉7 𝜉8

Δx /2

𝜉

Δx

averaging

ξ =
8

∑
i=1

ξi

Δt/2

Δt/2

Δx /2

Δt
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Solid seed growing without noise, convergence

Δx0 = 0.4, Δt0 = 0.01 Δx0 = 0.4, Δt0 = 0.01/16

Growth of a spherical seed:

Results are well converged!

ϵ2 = W = M = 1
Δf = 0.3, r*2D = 0.79



Nucleation with noise, convergence with Δt
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Nucleation with noise, convergence with Δx
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Why no convergence with Δx?
Increasing the spatial resolution when using white noise → new, higher frequencies 
are added to the system → the energy of the system is changed (increased) → 
nucleation is highly affected

L, N, Δx0 L, 2N, Δx0/2

In fact, for d ≥ 2 the total energy diverges as Δx → 0:  ultraviolet divergence
Solution: use a filtered noise with cutoff λc > 2Δx0 before refining the grid

• “Top down” approach: it is just a necessity to have converged solutions, or even 
just to avoid the ultraviolet divergence

• “Bottom up” approach: coarse graining with length 𝜆 → fluctuations below 𝜆 are 
already included in the system → they should not be added again.

Justification:



Convergence, 𝛥x, filtered noise 
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Similar noise patterns in different methods?
Rectangular grid Triangular mesh

• For rectangular grids: simple mean of the contributing pixel values
• For non-rectangular grids: weighted mean of the contributing pixel values

• Each pixel must be shared between the larger cells overlapping it according to 
their overlap area

• Simplification that may work for fine if the cells are large compared to the noise 
pixels: each noise pixel is assigned to the cell that contains its center

• Simple interpolation is not good

For the correct scaling and similarity, the values corresponding to the centers of the 
large cells (blue mesh) should be the average of the values corresponding to the 
underlying noise pattern (gray pixels)  



How to use filtered noise with non-regular mesh?

FFT



approximation (second-order Taylor expansion) of the bare potential around !!.
The result f ð !!Þ is a renormalised potential for !!.

These calculations can be readily verified numerically. As an example, the
standard double-well potential was used, V(!)¼ $ !2/2 þ !4/4 (usually called
!4-potential in the field-theory literature), and simulated in a two-dimensional
system of size L¼ 32 with a grid spacing of Dx¼ 0.5 and T¼ 0.05, using the standard
discretisation method described above with a time-step Dt¼ 0.005, and an initial
condition !ð~r, 0Þ ¼ 1. In time intervals of 10, !! was calculated, and in total 1000
points were sampled. Then, the free energy can be obtained by making a histogram
of the values of !!, and taking the logarithm of the counts (the normalisation
contributes only a constant to f and can be disregarded). The comparison between
the simulation and the prediction of Equation (44) in Figure 3 shows excellent
agreement.

It can be seen that the minimum of the free energy density is shifted with respect
to its ‘bare’ value !! ¼ 1. This can be understood intuitively by the following
reasoning. The system starts in the well of the ‘bare’ potential, at !! ¼ 1. The random
fluctuations push the system in both directions with equal probability, but since the
potential is asymmetric, the restoring force is larger for fluctuations towards !!4 1
than towards !!5 1; therefore, smaller values are more likely to occur. In the
example chosen here, the shift is small (the minimum is close to 1), but for increasing
temperature, the correction becomes larger and larger (for an example of such
simulations, see [59]), and eventually a phase transition occurs (the double well
disappears); in this regime, of course the first-order perturbation result is inaccurate.

The correction also depends on the discretisation. This is physically sound: a finer
discretisation introduces more degrees of freedom per unit volume in the discretised
system, and hence allows for more fluctuation modes that contribute to the free
energy. With a slight change of perspective, this can also be seen as the natural result

0.95 0.96 0.97 0.98 0.99 1
f

0

0.0002

0.0004

f

Simulation
Theory

Figure 3. Renormalised free energy density of the standard double-well potential as calculated
from Equation (44) and from numerical simulations, for T¼ 0.05, Dx¼ 0.5, Dt¼ 0.005. Only
the part close to one of the potential wells is shown. The zero of f was chosen at the minimum
of the renormalised potential. The bin size for the histograms was D !! ¼ 0:01.
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Other issue: the renormalization of F by the noise
Adding noise renormalizes the phase-field equations.

Consider the double well potential around the minima at 𝜙=0,1 → add fluctuations → 
asymmetric restoring forces → the mean value vill be shifted from 𝜙=0,1. 

Illustration: 
my earlier transformation curves

Solution: 
Renormalization of the potential 

M. Plapp: Philosophical Magazine, 91, 25–44 (2011)

• The properties of our model are not what we think
• No 1 to 1 correspondence between the two nucleation methods (noise & EL)  

The renormalization is not significant for simulations with large cells (small noise), 
e.g. in MS instability, dendritic sidebranching, but causes problems with small cells 
(large noise), e.g. in nucleation:



Benchmark problems for nucleation by noise

1. Check the model when filtered noise is added (small noise limit)
1. Obtain the mean value and the standard deviation of 𝜙 (space and time)
2. Calculate the free energy of the system, F[𝜙], and its standard deviation (time)

 The results should not depend on the mesh  

2. Nucletion by noise (increase the noise amplitude)
1. Calculate the solid fraction, determine the Avrami exponent
2. Number of particles vs. time? (not easy) → nucleation rate



Possible variants

1. Nucleation events only at t = 0 (n = d + 1 → n = d in the Avrami 
exponent)

2. Non-constant nucleation rate
1. Temperature gradient
2. Cooling

3. Heterogeneous nucleation
1. Nucleation events only on the surfaces
2. Boundary conditions? Suggestion: Model A and B, see 

later
4. Athermal nucleation by Greer

1. Virtual inoculant  particles at random places, free growth 
starts if driving force is supercritical

2. True inoculant particles at random places, nucleation 
and the formation of dormant embryos happens 
automatically. Free growth should also be automatic if 𝛥f 
> 𝛥fcrit(R). Check? 

�T = 17K

�T = 18K



Nucleation by solving the Euler-Lagrange equations

nonlinear elliptic PDEδF
δϕ

=
∂f
∂ϕ

− ϵ2 ∇2ϕ = 0

δF
δc

= ∇Mc ∇
∂f
∂c

= 0 →
∂f
∂c

= μ(ϕ, c) = const = μ0

F[ϕ, c] = ∫ [ ϵ2

2
(∇ϕ)2 + wg(ϕ) + f(ϕ, c)] dV

The Euler-Lagrange equations:

Simple binary PF model 
with no          term(∇c)2

If μ(ϕ, c) is a simple function, then c(ϕ) can be obtained and plugged back into the first ELE

scalar equation

The binary problem is reduced to the single phase-field problem

Solution methods: relaxation methods, shooting methods, etc.

ϕ( ⃗r ) → c(ϕ( ⃗r )) → W* = F[ϕ( ⃗r ), c(ϕ( ⃗r ))]

Further simplification: the spatial dimensions of the problem can be reduced if 
spherical or cylindrical symmetry can be assumed 

This is also a candidate for a benchmark poroblem: determine 𝜙(r) and W*



Phase field modeling of surfaces

F [�(r), c(r)] =

Z 
f(�, c) +

✏2

2
(r�)2

�
dV +

Z
Z(�) dS

Free energy functional including the Z(𝜙) surface function: 
(Cahn JCP 1977)

At the extremum by 𝜙(r) and c(r), the variation of F should disappear for any 
infinitesimally 𝜌(r) and 𝜒(r) compatible with the boundary conditions: 

�F = F [�(r) + ⇢(r), c(r) + �(r)]� F [�(r), c(r)] = 0

This leads to the Euler-Lagrange equations

in the volume

on the surface

Cases:

• 𝜙(r) is fixed along the boundary:

𝜌(r)≣0 on the surface, so the 
surface EL eq. holds

• 𝜙(r) is not fixed along the 
boundary:

the first part of the surface EL 
eq. gives the b.c. to use

surface = boundary of the simulation domain → surface properties = boundary conditions

@f(�, c)

@�
� ✏2r2� = 0

@f(�, c)

@c
= µ

⇥
Z 0(�)� ✏2r� · n

⇤
= 0

J.A. Warren et al. Phase field approach to heterogeneous crystal nucleation in alloys. Physical Review B, 79, 014204 (2009)



Model A
(not according to the Hohenberg-Halperin classification!!!)

isosurfaces of �

r�

surface  

Goal: direct realization of the 𝜓 contact angle
(L. Gránásy) 

r� · n =

r
2w

✏2
�(1� �) cos( )

Z 0(�) = �✏2r� · n = �6�SL�(1� �) cos( )

Z(�) = ��SL(3�
2 � 2�3) cos( )

We need Z(𝜙) to calculate the free energy of the system



Model A

László Gránásy

Ni:
• d10-90% = 2 nm
• 𝛾 = 364 mJ/m2
•Δx = 2 Å   (1 pixel ~ 1 atom)
• fluctuation-dissipation noise
• thermal feedback 

 = 45�

 = 60�  = 90�  = 120�



Model A

Solving the PDEs in cylindrical coordinate system (Matlab PDE toolbox)

The work of formation compared to the 
classical theory



Model B
Constant 𝜙=𝜙0 at the interface (Dirichlet b.c.)
(J. Warren) 

Obtaining the 𝜓 contact angle via Young’s law: 

�wl =
p
2✏2w

Z �0

0
�2(1� �)2 = �sl(3�

2
0 � 2�30)

�ws =
p
2✏2w

Z 1

�0

�2(1� �)2 = �sl(1� 3�20 + 2�30)

cos( ) =
�wl � �ws

�sl
= 2�20(3� 2�0)� 1

Setting 𝜙=𝜙0 at the interface: wetting layer
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There exist a critical value of 𝜙, below which the 
interface can grow freely



Model B

Solving the PDEs in cylindrical coordinate system

The work of formation compared to the 
classical theory



Comparison of Models A, B and C
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All 3 models are in agreement with the classical nucleation theory the in the R → ∞ limit



Summary

1. Insert nuclei at random places at random times (large scale view)
1. Homogeneous / heterogeneous

2. Add fluctuations and wait (small scale view)
1. Homogeneous / heterogeneous (with appropriate boundary conditions)

3. Athermal nucleation by Greer
1. Use the model to justify a non-stochastic “nucleation”
2. Simulate the whole process (heterogeneous nucleation + growth barrier)

Benchmark problems proposed:

Simulating the time evolution of the process

Determining the equilibrium configuration of the nucleus

1. Solve the respective Euler-Lagrange equations to obtain the saddle point solutions
1. Homogeneous / heterogeneous / athermal nucleation


