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Overview of Bayesian Uncertainty il ENGINEERING
Quantification and Propagation | TEXAS ASM UNIVERSITY

 UQ:
— Inverse problem in uncertainty analysis: determine the
parameterization of your models when confronted with experimental
data (or any other approximation to the ground truth)

* UP:
— Forward problem in uncertainty analysis: propagate uncertainty in

model parameters, simulation conditions forward through a model
or through a model chain

* Within a Bayesian framework that provides principled way for updating
knowledge
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Overview of Bayesian Uncertainty il ENGINEERING
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Experimental Data, D Forward Analysis for UP
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Motivation: Uncertainty Quantification

(Simulation V&YV)

Variation of transformation
temperatures with stress for
different heat treatment
conditions in Nis3Tizg7Hf.

Coherency stress

Stross (WPa)

Ni& Hf diffusion

Comparison of
model prediction
to experiments for
Nis3Tizg7Hf heat
treated at 550°C for
10 Hrs
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Motivation: Uncertainty Propagation
(Simulation V&YV)

RVEs with randoml
placed precipitates

Variation of transformation
temperatures with stress for
different heat treatment
conditions in Nisg 3Tiz 7Hf.

Coherency stress
distribution

Ni& Hf diffusion

Comparison of
model predicti
to experiments for
Nisg 3Tip9 7Hf2 heat
treated at 550°C for
10 Hrs
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Prediction of
effective response
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Calibrated Model Parameters
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Impler.n.enttation of Uncertainjty [iT] ENGINEERING
Quantification (and Propagation) :

MCMC Calibration and Uncertainty Quantification

:L Generation of n Sample points (n Loops) |

-‘ Random sampling of\ Calculation of the joint |

a new candidate distribution, (6),
[ point from a proposal for the candidate and ||
d [ distribution, 6(cand) the previous point |

R Starting point inthe ] |5« | /
I Uncertainty Propagation: I parameter Space, H % I :
| 1) First order second Moment I 339 Acceptance Calculation of |
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Approach.es to Bayesian Uncertainty [At] ENGINEERING
Propagation S ‘

Uncertainty Propagation is a forward analysis which is usually referred to the process of passing

uncertainties from the model parameters to predictions or across a chain of multi-scale models.

Uncertainty
Propagation
Approaches
I
_ [ N - ] )
Analytical Numerical
Approaches Approaches
[ I ] [ [ ]
) ) ) ) il il il
First/second- " Polynomial Quasi Monte
Gaussian Monte Carlo
order Second Process Chaos | || ... Simulation (Carlo | 11 L
Moment Expansion Simulation
~" ~"
Cheap, But Estimated Expensive, But Precise
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System-Level Uncertainty Propagation AJm

« System-level uncertainty analysis/propagation may be cumbersome due to
factors that result in inadequate integration of models.

* Models are computationally expensive
» Model chains are difficult to integrate seamlessly
» Model outputs may not be regular or continuous
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Challenges: AF,I ENGINEERING

* Phase field models are complex, computationally expensive, involving
coupled, non-linear physical phenomena

* Moreover, the dimensionality of the input parameter space is high

* Finally, the output space may be very complex and non-linear
* Question:
— How does one propagate uncertainty efficiently through such
complex models?
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Motivation: Microstructural design of l.kIl\./I ENGINEERING
Thermoelectric Materials | TEXAS A&M UNIVERSITY

A key factor in TE technologies is the development of high-performance TE materials.
+ Either completely new materials or
* Through more ingenious materials engineering of existing materials.
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Process-structure-property-performance
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Mass fluctuation scattering

Strategy: Minimizing Thermal Conductivity

Scattering phonons in different frequency ranges

Electrical conductivity
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Elastochemical
simulations
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Synthetic microstructure

phase

Chemical
simulations

Structure
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Experimental evidence of phase dissolution in Mg,Si,Sny, P
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Our strategy for investigating/altering
composition and structure space

e Strategy for Propagation/Quantification of Uncertanity I .
Process Definition H P Decision
— = Framework Propagation ~
" 1 . .
Proce551ngs |  Bayisan Framework "7 Structures

CALPHAD Model

Equilibirum
Processing

Fm=———

" Efficient MC sampling = 2\

Heterougenous
effects

Contributing Fields
(Elastic, etc.)

Calculation

Macroscopic Properties

Non-Equilibirum
Processing

Macroscopic Performance

thermodynamic variables
High fidelity, Expensive Computer

Diffusion pathways

Grain boundary
chemistry

Controllling Extensive and Intesinve _L|

| e—
L __J
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Is it only the mass scattering effect? l.kIl\.lI ENGINEERING

The impact of lattice strain on the nanostructure TEXAS A&M UNIVERSITY

Alloy composition Xg, = 0.3 Alloy composition Xg, = 0.4

(b)

(c)
TSEEN S, 9

RN
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(f)
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Figures description:
Evolution of the microstructure under different lattice strain conditions.
» Firstrow: 7 = 0.001, second row: 7 = 0.008, and third row: ¢ = 0.014.
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Overall Bayesian Framework for UQ/UP ] ENGINEERING
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First Step: UQ/UP over CALPHAD Model J{i)] ENGINEERING
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General Overview: hiy] ENGINEERING

Process space Structure space Property space
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field Approach
Thermodynamic stat
U(l
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Specification of Input Parameter Uncertainty in Phase-
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Efficient Sampling

» Our posterior information includes:

— marginal probability densities
— pairwise correlation estimates — | R &€ [_1, 1]dXd

i

in (XZ)

» First sample from independent, identically distributed
normal random vectors

G,,Ga, ...

.G, 1.i.d. ~ N (0, R)

Materials Science & Engineering Department Computational Materials Sci. Lab. _

» Pass through a Gaussian copula

Creates uniform samples while

preserving correlation

X;

(wi)

{u; = ©(gi) by

« Use marginal cumulative distributions for inverse
transform F—l

Creates samples from correct marginal
distributions while still preserving defined
correlations

4
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General Overview:
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Process space

Structure space

i

Property space

EPp

Fek

Phase-field Model Inputs
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Target variables

oo

o?

Char. Length

Volume fraction

Roundness
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Cubicness

Likelihood kernel u
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299944/
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003

std
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9.6552¢-07
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microstructure space?

How to propagate uncertainty in the

Target variables
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How to propagate uncertainty in the
microstructure space?

Materials Science & Engineering Department

[yt ENGINEERING
TEXAS A&M UNIVERSITY

Gaussian Process
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Next Step: Efficient Uncertainty
Propagation

Process space Structure space

By Efficiently Sampling this

MIIDIIIRETBRED:
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Property space

How do we get this?
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136 0 10

Computational Materials Sci. Lab.
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. ; ENGINEERING
Challenge: Sampling Issues F] ENGINEERING
Many different Uniform Incorrect
researchers sampling Sampling
) ./4:_—.*\0 . . o,r:_— LA ‘/’_—\;
.:","(t‘\‘ 'o ° o’//’ 'l\Jlu ° :///" 1 1 ¢
ree,% 00 Y2,/ NG 7 & o V14
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119655 ° 1% f__’z),)“ [N RN
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\o‘_.,‘g.o e o \o\gff,C e o o \ :_;,.
‘1'.0 °® e o S o 0o 0 0 o S=-
¢ .. ..... [ ) [ ) [ ] [ ) [ ) [ ) [ ) [ ] [ ] ¢

DA
| Discipline 1}&»

Need: A method for reusing previously propagated sample points
through expensive computational models or experiments even if those
samples were not drawn from the desired input distribution.

Materials Science & Engineering Department Computational Materials Sci. Lab.

Challenge: Sampling Issues Fp] ENGINEERING

* |sthere a way to ‘smartly’ sampling the input space in such a way that
we can attain a target distribution from sparse efficient sampling over
the input space?

4 .

Samples

Materials Science & Engineering Department Computational Materials Sci. Lab. _
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Approach 1.: Prc?bability Measure Optimized AF" TEQ'?'Q!EER'!?F
Importance Weights :

Given a set of input samples and a desired
target input probability measure:

— Construct a set of subsets of the sample (Halinistvininisivininisivinind ,

space. {odenao, LoLo 0] o B4
— Create a row vector for each subset with a 44A- E>(1) 8 8 (1) wy | _ 5&?;
one or zero entry if a given sample is in el Al 1111w (pay
the subset or not. Create a matrix from LT Al 0 0 1 0|t |P(A4y)

the set of row vectors. R A
— Create a column vector with entries equal

to the probability of a sample occurring in

a given subset according to the target

measure.
— Solve for importance weights using least

squares.

Materials Science & Engineering Department

Computational Materials Sci. Lab.

Approach 1: Probability Measure Optimized Importance ENGINEERING
Weights. Benchmark: Johnson-Cook Model AI'.'I TEXAS A&M UNIVERSITY
;. [ m
o =[A+Be)"]- |1 +C1n(3) : || - u)
\ €0 ‘Tm - T()
Material Coefficient Units Target Distribution Proposal Distribution
A [MPa] N(u =775,0% = 50) U[595,955]
B [MPa] N(u = 600, 0% = 100) U[350,850]
c -] N(u = 0.025,02 = 0.0025) | U[0.00050.005]
n -] N(u = 0.38,02 = 0.025) U[0.3,0.45]
m -] N(u = 0.98,0% = 0.01) U[0.95,1.01]
Material Parameters Units Selected Value
Effective plastic strain (€p/) [-] 0.08
Plastic strain rate (epr) [s71] 500
Reference strain rate (€,) [s71] 1
Current Temperature (T') [°c] 600
Room Temperature (7,,) [°c] 22
Melting Temperature (7,,) [°c] 1632

Materials Science & Engineering Department Computational Materials Sci. Lab. _

16



5/13/19

Weights. Benchmark: Johnson-Cook Model

o =[A+B(e)"]-

0

»
1 +Cln LI)

Approach 1: Probability Measure Optimized Importance

l ‘T—T{)l’"
- Jurn_To)

j_F,I ENGINEERING

TEXAS A&M UNIVERSITY

Material Coefficient Units Target Distribution Proposal Distribution
2 P
A [MPa] N(u = 775,02 = 50) U[595,955]
B [MPa] N(u = 600,02 = 100) U[350,850]
c [-] N(u = 0.025,02 = 0.0025) | U[0.0005'0.005]
n [-1 N(u = 0.38,02 = 0.025) U[0.3,0.45]
m [-] N(u = 098,02 = 0.01) U[0.95,1.01]
Results shown with 100,000 proposal samples
001 PDF - Proposed Method CDF - Proposed Method 0 Johnson Cook Model, of Mean
:l?;?p?sal | il?é%';‘sa\ / g
0.008 (\ ‘Weighted Proposal 08 Weighted Proposal|

/|
/

A
AN
/ \.

w
=]
3]

06
04

02
/

200 400 600 800 1000 1200 1400
Stress (Johnson-Cook Model)

Stress (Johns

200 400 600 800 1000
on-Cook Model)

1200 1400
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Approach 2: Ordered Monte Carlo

;\I’.’I ENGINEERING
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*  Monte Carlo approaches to UP

Proposed Approach: Reordered MC Sampling

require ~1x10° evaluations to

1.
converge
* Key idea: all samples are useful 3.
on average

* Thus, there are some samples
that are more useful than others 4.

Generate planned sample set.

2. Construct ECDF of planned sample set

Find sample that, when removed from the
planned sample set, results in the smallest
change (L, sense) in the ECDF of the
planned sample set.

Propagate this sample through the
computational model.

. Remove this sample from the planned

sample set.
Return to Step 3.

Materials Science & Engineering Department Computational Materials Sci. Lab. _
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Approach 2: Ordered Monte Carlo 5—1?4 TE'X\'filmEUER'R'?TG

x1073
102 102 10 ' 5 '
= Monte Carlo Simulation = Monte Carlo Simulation c = Monte Carlo Simulation = Monte Carlo Simulation
= Value-Optimal Reordering = Value-Optimal Reordering 8 = Value-Optimal Reordering 4 = Value-Optimal Reordering
[9]
© 3
%)
g g y
S 401 & 101 s 10’ 3 2
© [n3]
> 5
> 1
2
S 0
O
10° 100 b 100 B
10° 102 10° 102 10° 102 10° 102
Number of Samples Number of Samples Number of Samples Number of Samples

Materials Science & Engineering Department Computational Materials Sci. Lab.

Next Step: Apply Advanced UP and test

against PF Dataset (as Ground Truth) ] ENSINEERING

TEXAS A&M UNIVERSITY

Process space Structure space Property space
Target variabl Likelihood kernel p w M M
i, c ‘A 04887 034 03112 09219
i
2 SEEEEE £
s ow EEEEEE H e L,
] - BEEEEE g
3 a-|n . § ] E Roundne h‘—h- 096 03 0 15
.ﬁ S . - -
é : o é Cubicness; ‘—4 115 038 0 28284
=
- H =
-
— fiel ——J— 003 214 03 0.1302
A l

it = = 9.6552¢-07
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UP in Phase Field Models for Additive Manufacturing

Pejman Honarmandi?, Vahid Attarit, Isaac Benson? , Douglas Allaire? and,
Mohammed Mahmoud?, Alaa Elwany3, Supriyo Ghosh?, Kubra Karayagiz*,
Raymundo Arroyave,*23

1Department of Materials Science and Engineering, Texas A&M University
2Department of Mechanical Engineering, Texas A&M University
3pepartment of Industrial and Systems Engineering, Texas A&M University
MATERIALS SCIENCE *.5
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Challenges: AF" ENGINEERING

* Simulations in materials may be the result of a complex chain of models
* Each model is computationally expensive
*  Some model outputs are observable, some aren’t.

* Moreover, the experimental information necessary to validate/calibrate
models is scarce

* Question:

— How does one calibrate multiple models in a model chain with
incomplete information?

Materials Science & Engineering Department Computational Materials Sci. Lab. _
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Motivation ;‘-F’I ENGINEERING
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Selective Laser Melting (SLM)

Applications: Advantages:

»Mostly in dental and aerospace industry » Fabrication of complex geometries
» Fully dense parts

» Near-net-shape production

» No need for part-specific tooling

» Minimum waste of material

Materials Science & Engineering Department Computational Materials Sci. Lab. _

Motivation AF'I TEEIES,!&NMEUEIBEIET%
Challenges

Part quality Variability

. . .
¢  Micro-cracks Microstructure

L *  Mechanical properties
* Delamination
*  Swelling

» Balling effect

* Porosity

* Swelling

Materials Science & Engineering Department Computational Materials Sci. Lab.
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Framework

Integrated Computational Modeling
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i

Performance

Ultimate
strength

Yield Point

I —
Thermal
Modeling
CoMsoL ﬁ W .Q‘ by v ) WL\ v
MULTIREISSIES Microstructure
Modeling

&

SLM Process Thermodynamics
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(proportional limit)

Breaking
Point

Slope = Youngs modulus elasticity

Stress (pascals)

Elastic Zone j———— PlastioZone —
Strain [] strin Energy

https://www.orthobullets.com/basic-

science/9062/material-properties

Computational Materials Sci. Lab.

Framework

Laser

(Precipitation, Coarsening)

(Microscale)

Properties & Performance
(Macroscale)

Materials Science & Engineering Department

Finite Element Analysis Numerical

parameters (Process Modeling) parameters
) Thermodynamic '&g
S CALPHAD —- Properties &
= 2
EQ Extracted Approximate 2
3 Parameters Models L
= g
g o
B Atomistic Materidl Phase-field Model Numerical e
E Simulations parameters (Mesoscale) parametens g
=
@ <
a Approximate E
[ Models o

g Solid-Solid Microstructure Solidification Microstructure

(Planar,Cellular, Dendritic)

l » Quantity of Interests <J
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Coupling of Models

oy

ENGINEERING
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=

Boundary Types
Dirichlet: D @ @® ®
Symmetry: @
hermal Loads: ®

cmis  Kiem
x10°

G: Temperature Gradient
R: Solidification Growth Rate

Materials Science & Engineering Department
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Application to AM of Ni-Nb

ENGINEERING
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i

108

10’} Planar |

10°

Temperature Gradient, G (K/m)

1072
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Growth Rate, R (m/s)

Planar (R < Vcs) Planar (R > Vab)

(WA AU AN

Cellular
(cross section) *

Cellular
(along growth direction)

107!

* thanks to Xueqin Huang
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Effect of Process Parameters on Thermal Output
- Laser o Laser
: " 0
%1075 Highest 01078 ) Highest
O Simulation /8 T~o_ | Cooling Rate O Simulation ’rl og Cooling Rate
S o0 R °cg
S [ / / <]

~-1F / l’o ? ~-1F / / 0(% 0069 O

£ ’ e ? £ o °© o
3 A 0 3 K / 8
<= /e 3° <= /! ! 8
Y A ATE

I S A 2 High LED §s  Lowest Low LED

w / H & w . .

= ,/ ; o d ° e 201 W = (,(mlmg Rate Laser 162 W

2 s / o Power: 2 Power:

S-at / S-at

= / / o 000 Laser 957 mm/s & Laser 2050 mm/s

= / K o o% Speed: = Speed:

a -5 -,’/ I/ XM LED (High):  0.21J/mm a -5F LED (Low): | 0.08 J/mm

-6 . ® ) -6
10° 107 108 10° 107 108
Lowest Cooling Rate (K/s) Cooling Rate (K/s)

Cooling Rate
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Effect of Process Parameters on Microstructure
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High LED Low LED
(a) (b)
Power: 201[W] Speed: 957[mm/s] 0.06 Power: 162[W] Speed: 2050 [mm/s] 0.065
LED=0.21 [J/mm] 065 LED=0.08 [W.s/mm]
0.06 0.06
0.055 0.055
10.05 0.05
0.045 0.045
Vel e P HAVEAL ) :
* 10.04 0.04
0.035 0.035
0.03
0.03 e R R
0.025 0.025
0.02 0.02
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Experimental Validation

PDASI0:43 +£0.158 um 8

High LED
Laser Power: 122w
Laser Speed: 50 mm/s
LED: 2.44 )/mm

Temperature Gradient, G (K/m)

Experimental Validation

Medium LED

Laser Power: 122w
Laser Speed: 50 mm/s
LED: 2.44 )/mm

PDAS:0.39+£0.112 pm

Temperature Gradient, G (K/m)

1072 10t
Growth Rate, R (m/s)

' : Nb at. %

ials Science & Engineer
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Experimental Validation ENGINEERING
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Low LED
Laser Power: 162 W
Laser Speed: 957 mm/s
LED (LOW): 0.169 J/mm

Temperature Gradient, G (K/m)

1072 107!
Growth Rate, R (m/s)

2 2.5 3 3.5 4 4.5 5 5.5
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How do we Calibrate the PFM? AFW ENGINEERING
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* We need physical observations to calibrate the model

' Primary dendrite
d arm spacing PDAS

Phase field

Solidification
speed & gradient
Go, So

Mobility M,
interface energy o,
permeability p

index S(mm/s) G (K/m) PDAS (um)
1 b

2
e But S and G are unobservable i
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Experimental Observations

* 11 data points

Laser Direction

Materials Science & Engineering Department

TEXAS A&M UNIVERSITY

j_F,I ENGINEERING

.
2000
.
1500 . .
€
£
= . .
b
& 1000 s
.
500 °
L
el e :

.
® Width/depth available
@ PDAS and width/depth available

150 175

power [W]
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200 25 250

Experimental Observations for FE Model

44 data points (power, speed, width, depth)

depth [um]

100
s 1500
2000 ‘speed (mmis]

2000

width [um]

350

300

20

200

150

100

1500, e (mmis]
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S
e

00 200 300 60 700 800

400 500
speed [mms]
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Multi-Level Calibration AF;; ENGINEERING

*  We couple two models and calibrate them together

Melt Pool s Melt pool
dimensions W, D, L
Power P, speed v I "
-

\ ~— Temperature field
Conductivity

T'(x,,21t)
Ks, Ky, Kiz) Ky, Ky |_J‘>
ivi Z{mm) 1000
Absorptivity Ao, Amax Solidification

Y [mm] 600 » -
I<X‘””‘ gradient G, =
FE Model
Mobility M, :
interface energy o, .
permeability p S e e e

Phase field
S ————— Computational Materials Sci. Lab. _

Primary dendrite
arm spacing PDAS
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Emulation (Surrogate Modeling) Jijy] ENGINEERING

*  We replace the computationally-heavy models with fast emulators

Melt pool
D dimensions W, D, L
Power P, speed v I

Temperature field
Conductivity M1 T(x,y,2,t)

KS: KLIKLZ' KV'KVZY D

Absorptivity Ay, Amax

Solidification
|\ ) gradient G,
¥ FE Model M Primary dendrite
0 Mobility M, 2 arm spacing PDAS

interface energy o, D

permeability p

—— ==
0,

Materials Science & Engineering Department Computational Materials Sci. Lab.
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We construct a network of variables and use a Bayesian updating scheme
to estimate the model parameters.

Model 1
Y1¢: observable system response
D, : experimental data for y; Model 2
¥1u: unobservable system response ¥,: observable system response

D,: experimental data for y,
&,: auxiliary variable correcting for y,

TEXAS A&M UNIVERSITY

Bayesian Estimation AF;[ ENGINEERING
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We construct a network of variables and use a Bayesian updating scheme
to estimate the model parameters.

g = (7Q) = o (z,601) + €
! yiv w (z,01) +€)’
Y2 =T (!jll'~ 02) + & () + €.

FU) =n(6) - 7(62) - m(re) - 7w (07) - p (D1rglyrq) - p (Doly2)

TEXAS A&M UNIVERSITY

Bayesian Estimation AF" ENGINEERING
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Preliminary Results Am ENGINEERING

» Calibration parameters are estimated using the posterior distribution.
* Model 1 has seven calibration parameters (64, ..., 8-):

0.25

Prior Prior
m— Posterior m_ Posterior

Prior
= Posterior

85 - Actual
86 - Actual
o
6; - Actual

000
100 150 200
Posterior mode: 112.457

0
1500 2000 02 04 06 08 10
Posterior mode: 1184.146 Posterior mode: 0.332 Posterior mode: 0.769

Amax

2.

3.

4

5.

6. Apux > o
7.

M

odel 2 has one calibration parameter: *
1 o (interfacial energy)

0l
00000002 00000004 0.0000006 0.0000008 00000010
Posterior mode: 7.04€-07
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Results (Ct'd) ,'\I,',I ENGINEERING

* Calibrated response surface for each output
— sample

Depth (um) Depth (um)

Depth (um)

Materials Science & Engineering Department Computational Materials Sci. Lab.
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Results (Ct'd) AF’I ENGINEERING

* Calibrated response surface for the FE model

— sample Melt pool width
predictions i
MAPE = (36.2 pm) 21.1% MAPE = (18.6 pm) 12.1%
2200 - ..‘ < . 200
Y - Y
k)

) 500 1000 1500 2000
Speed (mmis]
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Results (Ct'd) AI,',I ENGINEERING

* Calibrated response surface for the PF model

PDAS

redictions
MAPE = (0.260 pm) 71.6% P MAPE = (0.020 pm) 5.8%

@ Mo 0

00 500
speed mmis] Lo W w0 e w0 @0 MW 00~
speed [mms
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Results (Ct'd)

Prediction error for y1o [um]

]

2000

1500

Speed [mm/s]

1000

500

=1

o
o © o Experimental Data

100 150 200 250
Power [W]

Melt pool width
predictions
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Speed [mm/s]
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* Can we identify areas of missing physics from each model?

Prediction error for y; [um]

o Experimental Data °

100 125 150 175 200 225 250

Power [W]

PDAS
predictions

Computational Materials Sci. Lab.

Summary

* UQ/UP is a central challenge to materials
modeling and simulation-assisted

materials design

* We have carried out massive HT phase
field models to explore UP approaches in
materials modeling

* Novel approaches to UP are being
explored to make the process more
efficient and practical

* UQ/UP through Bayesian Networks may
be a promising approach when
attempting simultaneous calibration of
models along a complex model chain

Materials Science & Engineering Department
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THANKS T
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