In [1]:
benchmark_id = '3a.1'
line_plots = [
    dict(name='free_energy', layout=dict(log_y=True, x_label=r'<i>t</i>', y_label=r'&#8497;', range_y=[1.8e6, 2.4e6], title="Free Energy v Time")),
    dict(name='solid_fraction', layout=dict(log_y=True, x_label=r'<i>t</i>')),
    dict(name='tip_position', layout=dict(log_y=True, x_label=r'<i>t</i>')),
    dict(name='phase_field_1500', layout=dict(aspect_ratio=1.0))
]
contour_plots = []
efficiency = True
In [2]:
# Parameters
benchmark_id = "4c.1"
line_plots = [
    {
        "name": "all_data",
        "layout": {
            "x_label": "Fictive Time, <i>t</i><sub>aim</sub>&nbsp;[a.u.]",
            "y_label": "Free Energy, &#8497;&nbsp;[aJ]",
            "title": "",
            "log_x": True,
        },
    },
    {
        "name": "all_data",
        "columns": ["time", "elastic_free_energy"],
        "layout": {
            "x_label": "Fictive Time, <i>t</i><sub>sim</sub>&nbsp;[a.u.]",
            "y_label": "Elastic Free Energy, &#8497;&nbsp;[aJ]",
            "title": "",
            "log_x": True,
        },
    },
    {
        "name": "all_data",
        "columns": ["time", "a_10"],
        "layout": {
            "x_label": "Fictive Time, <i>t</i><sub>sim</sub>&nbsp;[a.u.]",
            "y_label": "Precipitate Length, <i>a</i><sub>10</sub>&nbsp;[nm]",
            "title": "",
            "log_x": True,
        },
    },
    {
        "name": "all_data",
        "columns": ["time", "a_01"],
        "layout": {
            "x_label": "Fictive Time, <i>t</i><sub>sim</sub>&nbsp;[a.u.]",
            "y_label": "Precipitate Length, <i>a</i><sub>01</sub>&nbsp;[nm]",
            "title": "",
            "log_x": True,
        },
    },
    {
        "name": "all_data",
        "columns": ["time", "a_d"],
        "layout": {
            "x_label": "Fictive Time, <i>t</i><sub>sim</sub>&nbsp;[aJ]",
            "y_label": "Precipitate Length, <i>a</i><sub>d</sub>&nbsp;[nm]",
            "title": "",
            "log_x": True,
        },
    },
    {
        "name": "all_data",
        "columns": ["time", "elastic_free_energy"],
        "layout": {
            "x_label": "Fictive Time, <i>t</i><sub>sim</sub>&nbsp;[a.u.]",
            "y_label": "Normalized Elastic Energy, <i>g</i><sub>el</sub><sup>avg</sub>&nbsp;[aJ/nm<sup>2</sup>]",
            "title": "",
            "log_x": True,
        },
    },
    {
        "name": "contour",
        "layout": {
            "title": "Precipitate Boundary at Equilibrium",
            "log_x": True,
            "x_label": "x, [nm]",
            "y_label": "y, [nm]",
            "aspect_ratio": 1.0,
        },
    },
]
In [3]:
from IPython.display import display_markdown

display_markdown(f'''
# Benchmark { benchmark_id } Results

All results for the [{ benchmark_id } benchmark specification](../../benchmarks/benchmark{ benchmark_id }.ipynb/).
''', raw=True)

Benchmark 4c.1 Results

All results for the 4c.1 benchmark specification.

In [4]:
# To generate the comparison notebooks use:
# 
# papermill template.ipynb benchmark{version}.ipynb -f bm{version}.yaml
#
In [5]:
from IPython.display import HTML

HTML('''<script>
code_show=true; 
function code_toggle() {
 if (code_show){
 $('div.input').hide();
 $('div.prompt').hide();
 } else {
 $('div.input').show();
$('div.prompt').show();
 }
 code_show = !code_show
} 
$( document ).ready(code_toggle);
</script>
<form action="javascript:code_toggle()"><input type="submit" value="Code Toggle"></form>''')
Out[5]:
In [6]:
#from IPython.display import HTML, display
#from time import sleep

#display(HTML("""
#<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
#"""))

#sleep(0.1)

from IPython.display import HTML, display, display_markdown
from time import sleep

#import logging
#logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG)

display(HTML("""
<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
"""))

sleep(0.1)


from pfhub.main import line_plot, levelset_plot, get_table_data_style, plot_order_of_accuracy, get_result_data, efficiency_plot
#import itables.interactive
from itables import init_notebook_mode

init_notebook_mode(all_interactive=False)
In [7]:
colors = dict()

for x in line_plots:
    fig = line_plot(
        data_name=x['name'],
        benchmark_id=benchmark_id,
        layout=x['layout'],
        columns=x.get('columns', ('x', 'y'))
    )
    if 'extra_lines' in x:
        for kwargs in x['extra_lines']:
            fig.add_scatter(**kwargs)  
    for datum in fig['data']:
        name = datum['name']
        color = datum['line']['color']
        datum['line']['color'] = colors.get(name, color)
        colors[name] = datum['line']['color']
    fig.show()
In [8]:
for x in contour_plots:
    data = get_result_data([x['name']], [benchmark_id], x['columns'])

    levelset_plot(
        data,
        layout=x['layout'],
        mask_func=lambda df: (x['mask_z'][0] < df.z) & (df.z < x['mask_z'][1]),
        columns=x['columns']
    ).show()
In [9]:
if efficiency:
    efficiency_plot(benchmark_id).show()
    display_markdown("<span class='plotly-footnote' >* Wall time divided by the total simulated time.</span>", raw=True)

* Wall time divided by the total simulated time.

In [10]:
display_markdown(f'''
# Table of Results

Table of { benchmark_id } benchmark result uploads.
''', raw=True)

Table of Results

Table of 4c.1 benchmark result uploads.

In [11]:
## Currently switching off interactive tables as these are not converted to HTML properly.
## This might improve when jupyter-nbcovert is updated to a later version.

init_notebook_mode(all_interactive=False)
get_table_data_style(benchmark_id, pfhub_path='../..')
Out[11]:
Timestamp Name Code Author GitHub ID
2019-06-29 Linear_Elasticity_4c Fenics Shubhajit Mondal smondal44
2018-02-02 sfepy_4c_wd15_fake sfepy Daniel Wheeler wd15
Upload Benchmark Results