Interpolation via
Barycentric Coordinates

Some material from D. Anisimov
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BARYCENTER



Barycenter

* Law of lever: wyl; = w,l,

T N—

Center of mass

[, =p—W

l, =v,—p



Barycentric coordinates
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Opposite problem?
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CONVEXITY



Convexity

A set S is convex if any
pair of points p,g € S . ~
satisfy pg c S. ’

convex non-convex



Convex Hull

The convex hull of a set S is:

The minimal convex set that
contains S, i.e. any convex set C
such that S < C satisfies CH(S) < C.

The intersection of all convex sets
that contain S.

The set of all convex combinations
of p;eS, i.e. all points of the form:

convex non-convex
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Convex Hulls

The convex hull of a set is unique, up to
collinearities.

The boundary of the convex hull of a point set
is a polygon on a subset of the points.




BARYCENTRIC COORDINATES
FOR SIMPLICES



Triangle barycentric coordinates

#E St

A=A + Ay + Aj A. F. M&bius
[1790-1868]
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Triangle barycentric coordinates

Properties:
Constant precision: by + by + b3 =1
Linear precision: bjv; + byvg + b3vg = v

The Lagrange property: bz‘(vj) — 57;,7'

= Non-negativity: b; > 0 for : = 1,2, 3

A=A+ Ay + Ag Linearity along edges: b; = av + b for v € 0T
e Smoothness: b; € C*, k>0

5 — life=y

N {0 if i # j Closed-form: b; are expressed in analytic form
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Triangle barycentric coordinates

Data interpolation

Linear function
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Barycentric Coordinates for Simplices
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BARYCENTRIC COORDINATES
FOR POINT SETS



Point Set



Barycentric Coordinates?
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Lagrange property: b;(v;) = d;;



Barycentric Coordinates?

®
®
P A. F. M6bius
[1790-1868]
® ®
/ o Weights
always exist if
Weights such e #points >=
thatitis a ® dimension
barycenter of o
the point
set?

Lagrange property: b;(v;) = d;;



Inverse Distance [Shepard]
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Natural Neighbor Coordinates [Sibson]
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Voronoi Diagram

Let £ = {p1.....pa} be a set of points (so-called sites) in IRY. We

associate to each site pj its Voronoi region V(pj) such that:

Vpi) = (x € R Jx = pill < |x — pyll ¥ < n}.




Voronoi Diagram

The collection of the non-empty Voronoi regions and their faces, together with their
incidence relations, constitute a cell complex called the Voronoi diagram of E.

The locus of points which are equidistant to two sites pi and pj is called a bisector, all
bisectors being affine subspaces of IRY (lines in 2D).

demo



Voronoi Diagram

* A Voronoi cell of a site pi defined as the intersection of closed half-spaces
bounded by bisectors. Implies: All Voronoi cells are convex.

demo



Voronoi Diagram

* Voronoi cells may be unbounded with unbounded bisectors. Happens
when a site pi is on the boundary of the convex hull of E.

demo



Voronoi Diagram

Voronoi cells have faces of different dimensions.

In 2D, a face of dimension k is the intersection of 3 - k Voronoi cells. A
Voronoi vertex is generically equidistant from three points, and a Voronoi
edge is equidistant from two points.




Delaunay Triangulation

Dual structure of the Voronoi diagram.

The Delaunay triangulation of a set of sites E is a simplicial
complex such that k+1 points in E form a Delaunay simplex if their
Voronoi cells have nonempty intersection




Delaunay Triangulation

The Delaunay triangulation of a point set E covers the
convex hull of E.




Delaunay Triangulation

-canonical triangulation associated to any point set




Delaunay Triangulation: Local Property

Empty circle: A triangulation T of a point set E such that any d-simplex of T
has a circumsphere that does not enclose any point of E is a Delaunay
triangulation of E. Conversely, any k-simplex with vertices in E that can be
circumscribed by a hypersphere that does not enclose any point of E is a face of

the Delaunay triangulation of E.




An naive O(n“4) Construction Algorithm

= Repeat until impossible:
= Select a triple of sites.

= |If the circle through them is empty of other sites, keep the
triangle whose vertices are the triple.




Naive Algorithm?

Input: point set

Output: Delaunay triangles




Delaunay Triangulation

In 2D: « quality » triangulation

Smallest triangle angle: The Delaunay triangulation of a point set
E is the triangulation of E which maximizes the smallest angle.

Even stronger: The triangulation of E whose angular vector is
maximal for the lexicographic order is the Delaunay
triangulation of E.

good bad



Delaunay Triangulation

Thales’ Theorem: Let C be a circle, and [ a line
intersecting C at points a and b. Let p, g, r and s be
points lying on the same side of [, where p and g are on C,
r inside C and s outside C. Then:

S

Zarbh=2Zapb
Zagqb > Zash




Edge Flipping Algorithm

Improving a triangulation:

In any convex quadrangle, an edge flip is possible. If this
flip improves the triangulation locally, it also improves
the global triangulation.

If an edge flip improves the triangulation, the first edge
is called illegal.



Delaunay Triangulation

lllegal edges:

Lemma: An edge pq is illegal iff one of its opposite vertices is inside the circle
defined by the other three vertices.

Proof: By Thales’ theorem.

g

Theorem: A Delaunay triangulation does not contain illegal edges.

Corollary: A triangle is Delaunay iff the circle through its vertices is empty of
other sites (the empty-circle condition).

Corollary: The Delaunay triangulation is not unique if more than three sites are
co-circular.



Locate & Star-hole
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2 2
Theorem: If a,b,c,d form a CCW convex a g a§ +ag 1
polygon, then d lies in the circle determined gg| > % P+0 11,
by a, b and c iff: c, ¢, ci+ci 1
d, d, d2+d? 1

Proof: We prove that equality holds if the points are co-circular.
There exists a center q and radius r such that:

(ax - qx)2 + (ay _qy)2 = r2
and similarly for b, c, d:

a;+a; a, a, 1
b? +b? b b 1
=29, *1-2q,] " |+(@*+9i-r?)| |=0
Cf+C§ 0, c. a, c, (9 +ay—r°) 1
d; +d; d d 1

X y

So these four vectors are linearly dependent, hence their det vanishes.

Corollary: decircle(a,b,c) iff becircle(c,d,a) iff cecircle(d,a,b) iff agcircle(b,c,d) ‘




Another naive construction:

= Start with an arbitrary triangulation. Flip any illegal edge until no
more exist.

= Requires proof that there are no local minima.
= Could take a long time to terminate.




Incremental algorithm:

Form bounding triangle which encloses
all the sites.

Add the sites one after another in

random order and update triangulation.

If the site is inside an existing triangle:
= Connect site to triangle vertices.

= Check if a 'flip' can be performed on one
of the triangle edges. If so - check
recursively the neighboring edges.

If the site is on an existing edge:
= Replace edge with four new edges.

» Check if a 'flip’ can be performed on one
of the opposite edges. If so - check
recursively the neighboring edges.




= A new vertex p, is added, causing the
creation of edges.

= The legality of the edge p;p; (with
opposite vertex) p, is checked.

= If p;p; is illegal, perform a flip, and D
recursively check edges p;p, and p;
Py, the new edges opposite p,.

= Notice that the recursive call for p;p,
cannot eliminate the edge p, p,.

= Note: All edge flips replace edges
opposite the new vertex by edges

incident to it! ®
Py

—




P;

Pk




= Theorem: The expected number of edges flips
made in the course of the algorithm (some of
which also disappear later) is at most 6n.

* Proof: During insertion of vertex p;, k; new

edges are created: 3 new initial edges, and k;-
3 due to flips.

Backward analysis: E[k;] = the expected

degree of p; after the insertion is complete = 6
(Euler).




Point location for every point: O(log n) time.
Flips: ®(n) expected time in total (for all steps).
Total expected time: O(n log n).

Space: ©®(n).




Sibson Coordinates
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Sibson Coordinates

* Well define over convex hull

e Local support

e Satisfy Lagrange property

* C!continuity, except at points p. (only C°)



GENERALIZED
BARYCENTRIC COORDINATES



Quadrilateral?

Vie oV

! ]
P °
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Vl'(OSO) 'V

bi(p)=(1=s)(1—1), by(p)=s(1—1t), bs(p)=st, by(p)=(1—s)t

Bilinear interpolation



Quadrilateral

Vie oV

! ]
P °
p

Vl'(OSO) 'V

bi(p)=(1=s)(1—1), by(p)=s(1—1t), bs(p)=st, by(p)=(1—s)t

Bilinear map on unit square



Quadrilateral

V4¢ (1:1).1}3
P .
P
9y (CORS N

bi(p)=(1=s)(1—1), by(p)=s(1—1t), bs(p)=st, by(p)=(1—s)t

Image of bilinear map on unit square



Unified Formula! [Floater]

_ 4A;1(P)A2(P)

) G Gy T

G; = 2A; — B; — Bi,, + y/ B2 + B2+ 2A,A, + 2A,A,,

\

signed area



Generalized barycentric coordinates

Properties:

Constant precision
Linear precision

The Lagrange property
Non-negativity
Linearity along edges

Smoothness

Closed-form
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Interpolation

?Ji—)hi

5/36



Generalized barycentric coordinates

Wy

bi — W’ where W = ij

g=1

Different weights -> different coordinate functions
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Generalized barycentric coordinates

Wachspress coordinates [Wachspress, 1975]

Discrete harmonic coordinates [Pinkall and Polthier, 1993]
Mean value coordinates [Floater, 2003]

Metric coordinates [Malsch et al., 2005]

Harmonic coordinates [Joshi et al., 2007]

Maximum entropy coordinates [Hormann and Sukumar, 2008]
Complex barycentric coordinates [Weber et al., 2009]

Moving least squares coordinates [Manson and Schaefer, 2010]
Cubic mean value coordinates [Li and Hu, 2013]

Poisson coordinates [Li et al., 2013]
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Generalized barycentric coordinates

Wachspress coordinates [Wachspress, 1975]
Discrete harmonic coordinates [Pinkall and Polthier, 1993]
Mean value coordinates [Floater, 2003]

!

Three-point coordinates [Floater et al., 2006]

r? A —rPBi+ 1t (A

»
cR, w;= :
P : A1 A
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Three-point coordinates

10/36



Three-point coordinates

{.

N
'- Wachspress Mean value Discrete harmonic
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Three-point coordinates

\\.

N
N.
'. Wachspress Mean value Discrete harmonic
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Three-point coordinates

achspress Mean value
w;

b = i
W =0 W
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Mean value coordinates

Mean value )
C° continuity
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Mean value coordinates
Positive mean value coordinates [Lipman et al., 2007]

bz‘ A

~v

Mean value \/

Negative values
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Generalized barycentric coordinates

Wachspress coordinates [Wachspress, 1975]

Discrete harmonic coordinates [Pinkall and Polthier, 1993]
Mean value coordinates [Floater, 2003]

Metric coordinates [Malsch et al., 2005]

Harmonic coordinates [Joshi et al., 2007]

Maximum entropy coordinates [Hormann and Sukumar, 2008]
Complex barycentric coordinates [Weber et al., 2009]

Moving least squares coordinates [Manson and Schaefer, 2010]
Cubic mean value coordinates [Li and Hu, 2013]

Poisson coordinates [Li et al., 2013]
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Metric coordinates

04
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Metric coordinates

- o7

E-os
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| 04
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qi =Ti T Tig1— €
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B;

Ait1

Ci—1¢i—2Gi—1

Ciqi—14;

Ci+1¢iGi+1
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Metric coordinates

qi =Ti +Tig1 — €

Ao B; At
w; = — +
Ci—1qi—2qi—1  Ciqi—1¢;  Ci+1¢iqi+1

19/36



Metric coordinates

Ao B; n Aita

w; = —

Ci—1¢i—2¢i—1  Cigqi-1q0i  Cit1¢iQi+1
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Generalized barycentric coordinates

Wachspress coordinates [Wachspress, 1975]

Discrete harmonic coordinates [Pinkall and Polthier, 1993]
Mean value coordinates [Floater, 2003]

Metric coordinates [Malsch et al., 2005]

Harmonic coordinates [Joshi et al., 2007]

Maximum entropy coordinates [Hormann and Sukumar, 2008]
Complex barycentric coordinates [Weber et al., 2009]

Moving least squares coordinates [Manson and Schaefer, 2010]
Cubic mean value coordinates [Li and Hu, 2013]

Poisson coordinates [Li et al., 2013]
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Harmonic coordinates

Solve the Laplacian equation:
Abz = 0 s.t. bi’ap = lz

A L) T
1 — 1
o o o
> e @

No closed form!
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Biharmonic vs Harmonic

[Weber et al., 2012]

3

Biharmonic Harmonic
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Generalized barycentric coordinates

Wachspress coordinates [Wachspress, 1975]

Discrete harmonic coordinates [Pinkall and Polthier, 1993]
Mean value coordinates [Floater, 2003]

Metric coordinates [Malsch et al., 2005]

Harmonic coordinates [Joshi et al., 2007]

Maximum entropy coordinates [Hormann and Sukumar, 2008]
Complex barycentric coordinates [Weber et al., 2009]

Moving least squares coordinates [Manson and Schaefer, 2010]
Cubic mean value coordinates [Li and Hu, 2013]

Poisson coordinates [Li et al., 2013]
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Barycentric mapping

Target polygon

For v € P :

Source polygon
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Complex barycentric mapping

Source polygon

P=lz1,..., 2]

z; € C

For z € P :

9(z) = Zci(z)éi
EESRE

with complex
barycentric coordinates

CZ'ZP—>(C

Target polygon
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Complex barycentric coordinates

Three-point coordinates are generalized to complex three-point coordinates

Green coordinates are members of complex three-point coordinates

[Lipman et al., 2008] :
Induce conformal mappings

Harmonic
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APPLICATIONS



Editing




Image warping
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